首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As do human herpesvirus 6 variants A and B (HHV-6A and -6B), HHV-7 encodes a homolog of the alphaherpesvirus origin binding protein (OBP), which binds at sites in the origin of lytic replication (oriLyt) to initiate DNA replication. In this study, we sought to characterize the interaction of the HHV-7 OBP (OBP(H7)) with its cognate sites in the 600-bp HHV-7 oriLyt. We expressed the carboxyl-terminal domain of OBP(H7) and found that amino acids 484 to 787 of OBP(H7) were sufficient for DNA binding activity by electrophoretic mobility shift analysis. OBP(H7) has one high-affinity binding site (OBP-2) located on one flank of an AT-rich spacer element and a low-affinity site (OBP-1) on the other. This is in contrast to the HHV-6B OBP (OBP(H6B)), which binds with similar affinity to its two cognate OBP sites in the HHV-6B oriLyt. The minimal recognition element of the OBP-2 site was mapped to a 14-bp sequence. The OBP(H7) consensus recognition sequence of the 9-bp core, BRTYCWCCT (where B is a T, G, or C; R is a G or A; Y is a T or C; and W is a T or A), overlaps with the OBP(H6B) consensus YGWYCWCCY and establishes YCWCC as the roseolovirus OBP core recognition sequence. Heteroduplex analysis suggests that OBP(H7) interacts along one face of the DNA helix, with the major groove, as do OBP(H6B) and herpes simplex virus type 1 OBP. Together, these results illustrate both conserved and divergent DNA binding properties between OBP(H7) and OBP(H6B).  相似文献   

2.
We previously demonstrated by a DNA-binding assay that the human herpesvirus 6B (HHV-6B) replication origin has a structure similar to those of alphaherpesviruses, although the HHV-6B and herpes simplex virus type 1 (HSV-1) origin-binding proteins (OBPs) and origins are not interchangeable. Here we describe additional properties of the interaction between HHV-6B OBP and the HHV-6B origin. Competitive electrophoretic mobility shift assays (EMSAs) with DNA duplexes containing single-base alterations allowed deduction of a consensus DNA sequence for HHV-6B-specific OBP binding, YGWYCWCCY, where Y is T or C and W is T or A, while that for HSV-1-specific binding was reported to be YGYTCGCACT. By EMSA, the HHV-6B OBP DNA-binding domain was mapped to a segment containing amino acids 482 to 770. However, in Southwestern (protein-DNA) blotting, the region sufficient for the DNA binding encompassed only amino acids 657 to 770. Similarly, Southwestern blotting showed that amino acids 689 to 851 of HSV-1 OBP had HSV-1 origin-binding activity, although this region was insufficient for origin binding in the EMSA. Although the longer DNA-binding domains identified by EMSA have marginal overall homology among HHV-6B and alphaherpesvirus OBP homologs, the smaller regions sufficient for the binding observed by Southwestern blotting have significant similarity. From these results, we propose a hypothesis that the DNA-binding domain of herpesvirus OBPs consists of two subdomains, one containing a conserved motif that contacts DNA directly, and another, less well conserved, that may modulate either the conformation or accessibility of the binding domain.  相似文献   

3.
DNA sequences which have structural features suggestive of their functioning as an origin of lytic-phase DNA replication were previously identified in both human herpesvirus 6B strain Z29 [HHV-6B (Z29)] and in HHV-6A (U1102). Plasmid constructs containing the putative HHV-6B (Z29) oriLyt element were replicated after transfection into permissive T cells, when trans-acting factors were provided by HHV-6B (R-1) infection. By using this assay, the HHV-6B (Z29) oriLyt was mapped to a minimal region of approximately 400 bp which lies upstream of the gene that is homologous to herpes simplex virus UL29, a region that carries an origin in other betaherpesviruses and in some alphaherpesviruses.  相似文献   

4.
The complexity of mammalian origins of DNA replication has prevented, so far, the in vitro studies of the modalities of initiator protein binding and origin selection. We approached this problem by utilizing the human lamin B2 origin, wherein the precise start sites of replication initiation have been identified and known to be bound in vivo by the origin recognition complex (ORC). In order to analyze the in vitro interactions occurring at this origin, we have compared the DNA binding requirements and patterns of the human recombinant Orc4 with those of preparations of HeLa nuclear proteins containing the ORC complex. Here we show that both HsOrc4 alone and HeLa nuclear proteins recognize multiple sites within a 241-bp DNA sequence encompassing the lamin B2 origin. The DNA binding activity of HeLa cells requires the presence of ORC and can be reproduced in the absence of all the other proteins known to be recruited to origins by ORC. Both HsOrc4 alone and HeLa nuclear proteins exhibit cooperative and ATP-independent binding. This binding covers nucleotides 3853-3953 and then spreads outward. Because this region contains the start sites of DNA synthesis as well as the area protected in vivo and preserves protein binding capacity in vitro after removal of a fraction of the protected region, we suggest that it could contain the primary binding site. Thus the in vitro approach points to the sequence requirements for ORC binding as a key element for origin recognition.  相似文献   

5.
Human herpesvirus 7 (HHV-7) DNA sequences colinear with the HHV-6 lytic-phase origin of DNA replication (oriLyt) were amplified by PCR. Plasmid constructs containing these sequences were replicated in HHV-7-infected cord blood mononuclear cells but not in HHV-6-infected cells. In contrast, plasmids bearing HHV-6 oriLyt were replicated in both HHV-6- and HHV-7-infected cells. Finally, the minimal HHV-7 DNA element necessary for replicator activity was mapped to a 600-bp region which contains two sites with high homology to the consensus binding site for the HHV-6 origin binding protein. At least one of these binding sites was shown to be essential for replicator function of HHV-7 oriLyt.  相似文献   

6.
H S Camp  P M Coussens    R F Silva 《Journal of virology》1991,65(11):6320-6324
Previously, we isolated a replicon from a defective Marek's disease virus (MDV), analogous to defective herpes simplex viruses (amplicons). Defective viruses contain cis-acting elements required for DNA synthesis and virus propagation such as an origin of DNA replication and a packaging-cleavage signal site. In this report, the MDV replicon was utilized to locate an origin of MDV DNA replication. A comparison of MDV replicon sequences with other herpesvirus replication origin sequences revealed a 90-bp sequence containing 72% identity to the lytic origin (oris) of herpes simplex virus type 1. This 90-bp sequence displayed no similarity to betaherpesvirus or gammaherpesvirus replication origins. The 90-bp sequence is arranged as an imperfect palindrome centered around an A+T-rich region. This sequence also contains a 9-bp motif (5'CGTTCGCAC3') highly conserved in alphaherpesvirus replication origins. To test functionality of the 90-bp putative MDV replication origin, we conducted DpnI replication assays with subclones generated from the 4-kbp MDV replicon. A 700-bp MDV replicon subfragment containing the 90-bp putative MDV replication origin sequence is capable of replicating in chicken embryo fibroblast cells cotransfected with helper virus DNA. In conclusion, we identified a functional origin of DNA replication in MDV. Similarity of MDV origin sequences to those of alphaherpesviruses supports the current contention that MDV is more closely related to alphaherpesviruses than to gammaherpesviruses.  相似文献   

7.
Mammalian DNA replication origins localize to sites that range from base pairs to tens of kilobases. A regular distribution of initiations in individual cell cycles suggests that only a limited number of these numerous potential start sites are converted into activated origins. Origin interference can silence redundant origins; however, it is currently unknown whether interference participates in spacing functional human initiation events. By using a novel hybridization strategy, genomic Morse code, on single combed DNA molecules from primary keratinocytes, we report the initiation sites present on 1.5 Mb of human chromosome 14q11.2. We confirm that initiation zones are widespread in human cells, map to intergenic regions, and contain sequence motifs found at other mammalian initiation zones. Origins used per cell cycle are less abundant than the potential sites of initiation, and their limited use increases the spacing between initiation events. Between-zone interference decreases in proportion to the distance from the active origin, whereas within-zone interference is 100% efficient. These results identify a hierarchical organization of origin activity in human cells. Functional origins govern the probability that nearby origins will fire in the context of multiple potential start sites of DNA replication, and this is mediated by origin interference.  相似文献   

8.
9.
The plasmid R6K contains three distinct origins of replication: alpha, beta, and gamma. The gamma sequence is essential in cis and acts as an enhancer that activates the distant alpha and beta origins. R6K therefore represents a favorable procaryotic model system with which to unravel the biochemical mechanisms underlying selective origin activation, particularly activation involving distant sites on the same chromosome. We have discovered that plasmids containing the origins alpha and gamma required the Escherichia coli DnaA initiator protein in addition to the R6K-encoded initiator protein, Pi, and other host replisomal proteins for their maintenance in vivo. Plasmids initiating replication from origin beta required only the Pi initiator protein and other host replisomal proteins. We have exploited the differential requirement for the DnaA protein by origins gamma and beta to selectively study and localize the minimal origin beta sequences by deletion analysis as one test of a looping model of origin activation. A 64-bp region spanning the extreme -COOH terminal coding sequence of the Pi protein was found to be essential for replication in vivo in the absence of DnaA protein, consistent with the approximate physical location of the beta origin. Replication emanating from origin beta could be abolished in vivo by deletion of the 9-bp target site for Pi protein-mediated DNA looping between the gamma origin/enhancer and the distant beta origin. Electron microscopy of nascent replication intermediates generated in vivo directly confirmed our genetic localization of the beta origin. Our results strongly suggest that activation of the beta origin by a distant replication enhancer element requires a small target sequence essential for initiator protein-mediated DNA looping.  相似文献   

10.
The six-subunit origin recognition complex (ORC) is a DNA replication initiator protein in eukaryotes that defines the localization of the origins of replication. We report here that the smallest Drosophila ORC subunit, Orc6, is a DNA binding protein that is necessary for the DNA binding and DNA replication functions of ORC. Orc6 binds DNA fragments containing Drosophila origins of DNA replication and prefers poly(dA) sequences. We have defined the core replication domain of the Orc6 protein which does not include the C-terminal domain. Further analysis of the core replication domain identified amino acids that are important for DNA binding by Orc6. Alterations of these amino acids render reconstituted Drosophila ORC inactive in DNA binding and DNA replication. We show that mutant Orc6 proteins do not associate with chromosomes in vivo and have dominant negative effects in Drosophila tissue culture cells. Our studies provide a molecular analysis for the functional requirement of Orc6 in replicative functions of ORC in Drosophila and suggest that Orc6 may contribute to the sequence preferences of ORC in targeting to the origins.  相似文献   

11.
Papillomavirus DNA replication requires the viral trans-acting factors E1 and E2 in addition to the host cell's general replication machinery. The origins of DNA replication in bovine and human papillomavirus genomes have been localized to a specific part of the upstream regulatory region (URR) which includes recognition sites for E1 and E2 proteins. To fine map cis-acting elements influencing human papillomavirus type 11 (HPV-11) DNA replication and to determine the relative contributions of such sites, we engineered consecutive linker substitution mutations across a region of 158 bp in the HPV-11 origin and tested mutant origins for replication function in a cell-based transient replication assay. Our results both confirm and extend the findings of others. E2 binding sites are the major cis components of HPV-11 DNA replication, and there is evidence for synergy between these sites. Differential capacity of the three E2 binding sites within the origin to affect replication may be attributed, at least in part, to context. At least one E2 binding site is essential for replication. The imperfect AT-rich palindrome of the E1 helicase binding site is not essential since replication occurs even in the absence of this sequence. However, replication is enhanced by the presence of the palindromic sequence in the HPV-11 origin. Sequence components adjacent to the E1 and E2 binding sites, comprising AT-rich and purine-rich elements and the consensus TATA box sequence, probably contribute to the overall efficiency of replication, though they are nonessential. None of the other cis elements of the HPV-11 origin region analyzed seems to influence replication significantly in the system described. The HPV-11 origin of DNA replication therefore differs from those of the other papovaviruses, simian virus 40 and polyomavirus, inasmuch as an intact helicase binding site and adjacent AT-rich components, while influential, are not absolutely essential.  相似文献   

12.
The origin recognition complex (ORC) plays a central role in the initiation of DNA replication in eukaryotic cells. It interacts with origins of DNA replication in chromosomal DNA and recruits additional replication proteins to form functional initiation complexes. These processes have not been well characterized at the biochemical level except in the case of Saccharomyces cerevisiae ORC. We report here the expression, purification, and initial characterization of Schizosaccharomyces pombe ORC (SpORC) containing six recombinant subunits. Purified SpORC binds efficiently to the ars1 origin of DNA replication via the essential Nterminal domain of the SpOrc4 subunit which contains nine AT-hook motifs. Competition binding experiments demonstrated that SpORC binds preferentially to DNA molecules rich in AT-tracts, but does not otherwise exhibit a high degree of sequence specificity. The complex is capable of binding to multiple sites within the ars1 origin of DNA replication with similar affinities, indicating that the sequence requirements for origin recognition in S. pombe are significantly less stringent than in S. cerevisiae. We have also demonstrated that SpORC interacts directly with Cdc18p, an essential fission yeast initiation protein, and recruits it to the ars1 origin in vitro. Recruitment of Cdc18p to chromosomal origins is a likely early step in the initiation of DNA replication in vivo. These data indicate that the purified recombinant SpORC retains at least two of its primary biological functions and that it will be useful for the eventual reconstitution of the initiation reaction with purified proteins.  相似文献   

13.
The adenovirus origin of DNA replication contains three functionally distinct sequence domains (A, B, and C) that are essential for initiation of DNA synthesis. Previous studies have shown that domain B contains the recognition site for nuclear factor I (NF-I), a cellular protein that is required for optimal initiation. In the studies reported here, we used highly purified NF-I, prepared by DNA recognition site affinity chromatography (P. J. Rosenfeld and T. J. Kelly, Jr., J. Biol. Chem. 261:1398-1408, 1986), to investigate the cellular protein requirements for initiation of viral DNA replication. Our data demonstrate that while NF-I is essential for efficient initiation in vitro, other cellular factors are required as well. A fraction derived from HeLa cell nuclear extract (BR-FT fraction) was shown to contain all the additional cellular proteins required for the complete reconstitution of the initiation reaction. Analysis of this complementing fraction by a gel electrophoresis DNA-binding assay revealed the presence of two site-specific DNA-binding proteins, ORP-A and ORP-C, that recognized sequences in domains A and C, respectively, of the viral origin. Both proteins were purified by DNA recognition site affinity chromatography, and the boundaries of their binding sites were defined by DNase I footprint analysis. Additional characterization of the recognition sequences of ORP-A, NF-I, and ORP-C was accomplished by determining the affinity of the proteins for viral origins containing deletion and base substitution mutations. ORP-C recognized a sequence between nucleotides 41 and 51 of the adenovirus genome, and analysis of mutant origins indicated that efficient initiation of replication is dependent on the presence of a high-affinity ORP-C-binding site. The ORP-A recognition site was localized to the first 12 base pairs of the viral genome within the minimal origin of replication. These data provide evidence that the initiation of adenovirus DNA replication involves multiple protein-DNA interactions at the origin.  相似文献   

14.
Unlike bacteria, many eukaryotes initiate DNA replication from genomic sites that lack apparent sequence conservation. These loci are identified and bound by the origin recognition complex (ORC), and subsequently activated by a cascade of events that includes recruitment of an additional factor, Cdc6. Archaeal organisms generally possess one or more Orc1/Cdc6 homologs, belonging to the Initiator clade of ATPases associated with various cellular activities (AAA(+)) superfamily; however, these proteins recognize specific sequences within replication origins. Atomic resolution studies have shown that archaeal Orc1 proteins contact double-stranded DNA through an N-terminal AAA(+) domain and a C-terminal winged-helix domain (WHD), but use remarkably few base-specific contacts. To investigate the biochemical effects of these associations, we mutated the DNA-interacting elements of the Orc1-1 and Orc1-3 paralogs from the archaeon Sulfolobus solfataricus, and tested their effect on origin binding and deformation. We find that the AAA(+) domain has an unpredicted role in controlling the sequence selectivity of DNA binding, despite an absence of base-specific contacts to this region. Our results show that both the WHD and ATPase region influence origin recognition by Orc1/Cdc6, and suggest that not only DNA sequence, but also local DNA structure help define archaeal initiator binding sites.  相似文献   

15.
The bipartite geminiviruses such as tomato golden mosaic virus (TGMV) and squash leaf curl virus (SqLCV) have two single-stranded circular genomic DNAs, the A and B components, thought to be replicated from double-stranded circular DNA intermediates. Although it has been presumed that the origin sequences for viral replication are located in the highly conserved 200-nucleotide common region (CR) present in both genomic components and that the viral-encoded AL1 protein interacts with these sequences to effect replication, there has been no evidence that this is in fact so. We have investigated these questions, demonstrating selectivity and sequence specificity in this protein-DNA interaction. Simple component switching between the DNAs of TGMV and SqLCV and analysis of replication in leaf discs showed that whereas the A components of both TGMV and SqLCV promote their own replication and that of their cognate B component, neither replicates the noncognate B component. Furthermore, using an in vivo functional replication assay, we found that cloned viral CR sequences function as a replication origin and direct the replication of nonviral sequences in the presence of AL1, with both circular single-stranded and double-stranded DNA being synthesized. Finally, by the creation of chimeric viral CRs and specific subfragments of the viral CR, we demonstrated sequence-specific recognition of the replication origin by the AL1 protein, thereby localizing the origin to an approximately 90-nucleotide segment in the AL1 proximal side of the CR that includes the conserved geminiviral stem-loop structure and approximately 60 nucleotides of 5' upstream sequence. By deletional analysis, we further demonstrated that the conserved stem-loop structure is essential for replication. These studies identify the functional viral origin of replication within the CR, demonstrating that sequence-specific recognition of this origin by the AL1 protein is required for replication.  相似文献   

16.
17.
Replication initiation is a key event in the cell cycle of all organisms and oriC , the replication origin in Escherichia coli , serves as the prototypical model for this process. The minimal sequence required for oriC function was originally determined entirely from plasmid studies using cloned origin fragments, which have previously been shown to differ dramatically in sequence requirement from the chromosome. Using an in vivo recombineering strategy to exchange wt oriC s for mutated ones regardless of whether they are functional origins or not, we have determined the minimal origin sequence that will support chromosome replication. Nearly the entire right half of oriC could be deleted without loss of origin function, demanding a reassessment of existing models for initiation. Cells carrying the new DnaA box-depleted 163 bp minimal oriC exhibited little or no loss of fitness under slow-growth conditions, but were sensitive to rich medium, suggesting that the dense packing of initiator binding sites that is a hallmark of prokaryotic origins, has likely evolved to support the increased demands of multi-forked replication.  相似文献   

18.
19.
We have previously shown that both a centromere (CEN) and a replication origin are necessary for plasmid maintenance in the yeast Yarrowia lipolytica (). Because of this requirement, only a small number of centromere-proximal replication origins have been isolated from Yarrowia. We used a CEN-based plasmid to obtain noncentromeric origins, and several new fragments, some unique and some repetitive sequences, were isolated. Some of them were analyzed by two-dimensional gel electrophoresis and correspond to actual sites of initiation (ORI) on the chromosome. We observed that a 125-bp fragment is sufficient for a functional ORI on plasmid, and that chromosomal origins moved to ectopic sites on the chromosome continue to act as initiation sites. These Yarrowia origins share an 8-bp motif, which is not essential for origin function on plasmids. The Yarrowia origins do not display any obvious common structural features, like bent DNA or DNA unwinding elements, generally present at or near eukaryotic replication origins. Y. lipolytica origins thus share features of those in the unicellular Saccharomyces cerevisiae and in multicellular eukaryotes: they are discrete and short genetic elements without sequence similarity.  相似文献   

20.
The genomic sequence of the archaeon Methanosarcina mazei has been analyzed by the Z curve method. The Z curve is a three-dimensional curve that uniquely represents the given DNA sequence. The three-dimensional Z curve and its x and y components for the genome of M. mazei show a sharp peak and relatively broad peak, respectively. The cdc6 gene is located exactly at the position of the sharp peak. Based on the known behavior of the Z curves for the archaea whose replication origins have been identified, we hypothesize that the replication origin and termination sites correspond to the positions of the sharp peak and broad peak, respectively. We have located an intergenic region that is between the cdc6 gene (MM1314) and the gene for an adjacent protein (MM1315), which shows strong characteristics of the known replication origins. This region is highly rich in AT and contains multiple copies of consecutive repeats. Our results strongly suggest that the single replication origin of M. mazei is situated at the intergenic region between the cdc6 gene and the gene for the adjacent protein, from 1,564,657 to 1,566,241 bp of the genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号