首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The central nervous system of the pond snail, Lymnaea stagnalis, contains many large, identified neurons which can be easily manipulated making it an advantageous model system to elucidate in vivo the architecture of neuronal signal transduction pathways. We have isolated three cDNA clones encoding G protein alpha subunits that are expressed in the Lymnaea CNS, i.e. G alpha o, G alpha s and G alpha i. The deduced proteins exhibit a very high degree of sequence identity to their vertebrate and invertebrate counterparts. The strong conservation of G protein alpha subunits suggests that functional insights into G protein-mediated signalling routes obtained through the experimental amenability of the Lymnaea CNS will have relevance for similar pathways in the mammalian brain.  相似文献   

2.
Most vertebrates have two nasal epithelia: the olfactory epithelium (OE) and the vomeronasal epithelium (VNE). The apical surfaces of OE and VNE are covered with cilia and microvilli, respectively. In rodents, signal transduction pathways involve G alpha olf and G alpha i2/G alpha o in OE and VNE, respectively. Reeve's turtles (Geoclemys reevesii) live in a semiaquatic environment. The aim of this study was to investigate the localization of G proteins and the morphological characteristics of OE and VNE in Reeve's turtle. In-situ hybridization analysis revealed that both G alpha olf and G alpha o are expressed in olfactory receptor neurons (ORNs) and vomeronasal receptor neurons (VRNs). Immunocytochemistry of G alpha olf/s and G alpha o revealed that these two G proteins were located at the apical surface, cell bodies, and axon bundles in ORNs and VRNs. Electron microscopic analysis revealed that ORNs had both cilia and microvilli on the apical surface of the same neuron, whereas VRNs had only microvilli. Moreover G alpha olf/s was located on only the cilia of OE, whereas G alpha o was not located on cilia but on microvilli. Both G alpha olf/s and G alpha o were located on microvilli of VNE. These results imply that, in Reeve's turtle, both G alpha olf/s and G alpha o function as signal transduction molecules for chemoreception in ORNs and VRNs.  相似文献   

3.
4.
Signaling studies in living cells would be greatly facilitated by the development of functional fluorescently tagged G-protein alpha subunits. We have designed G(i/o)alpha subunits fused to the cyan fluorescent protein and assayed their function by studying the following two signal transduction pathways: the regulation of G-protein-gated inwardly rectifying K(+) channels (Kir3.0 family) and adenylate cyclase. Palmitoylation and myristoylation consensus sites were removed from G(i/o) alpha subunits (G(i1)alpha, G(i2)alpha, G(i3)alpha, and G(oA)alpha) and a mutation introduced at Cys(-4) rendering the subunit resistant to pertussis toxin. This construct was fused in-frame with cyan fluorescent protein containing a short peptide motif from GAP43 that directs palmitoylation and thus membrane targeting. Western blotting confirmed G(i/o)alpha protein expression. Confocal microscopy and biochemical fractionation studies revealed membrane localization. Each mutant G(i/o) alpha subunit significantly reduced basal current density when transiently expressed in a stable cell line expressing Kir3.1 and Kir3.2A, consistent with the sequestration of the Gbetagamma dimer by the mutant Galpha subunit. Moreover, each subunit was able to support A1-mediated and D2S-mediated channel activation when transiently expressed in pertussis toxin-treated cells. Overexpression of tagged G(i3)alpha and G(oA)alpha alpha subunits reduced receptor-mediated and forskolin-induced cAMP mobilization.  相似文献   

5.
Activators of G-protein signaling 1-3 (AGS1-3) were identified in a functional screen of mammalian cDNAs that activated G-protein signaling in the absence of a receptor. We report the isolation and characterization of an additional AGS protein (AGS4) from a human prostate leiomyosarcoma cDNA library. AGS4 is identical to G18.1b, which is encoded by a gene within the major histocompatibility class III region of chromosome 6. The activity of AGS4 in the yeast-based functional screen was selective for G(i2)/G(i3) and independent of guanine-nucleotide exchange by G(i)alpha. RNA blots indicated enrichment of AGS4/G18.1b mRNA in heart, placenta, lung, and liver. Immunocytochemistry with AGS4/G18.1b-specific antisera indicated a predominant nonhomogeneous, extranuclear distribution within the cell following expression in COS7 or Chinese hamster ovary cells. AGS4/G18.1b contains three G-protein regulatory motifs downstream of an amino terminus domain with multiple prolines. Glutathione S-transferase (GST)-AGS4/G18.1b fusion proteins interacted with purified G(i)alpha, and peptides derived from each of the G-protein regulatory motifs inhibited guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) binding to purified G(i)alpha(1). AGS4/G18.1b was also complexed with G(i)alpha(3) in COS7 cell lysates following cell transfection. However, AGS4/G18.1b did not alter the generation of inositol phosphates in COS7 cells cotransfected with the Gbetagamma-regulated effector phospholipase C-beta2. These data suggest either that an additional signal is required to position AGS4/G18.1b in the proper cellular location where it can access heterotrimer and promote subunit dissociation or that AGS4 serves as an alternative binding partner for G(i)alpha independent of Gbetagamma participating in G-protein signaling events that are independent of classical G-protein-coupled receptors at the cell surface.  相似文献   

6.
A ligand-independent activator of heterotrimeric brain G-protein was partially purified from detergent-solubilized extracts of the neuroblastoma-glioma cell hybrid NG108-15. The G-protein activator (NG108-15 G-protein activator (NG-GPA)) increased [(35)S]guanosine 5'-O-(thiotriphosphate) ([(35)S]GTPgammaS) to purified brain G-protein in a magnesium-dependent manner and promoted GDP dissociation from Galpha(o). The NG-GPA also increased GTPgammaS binding to purified, recombinant Galpha(i2), Galpha(i3), and Galpha(o), but minimally altered nucleotide binding to purified transducin. The NG-GPA increased GTPgammaS binding to membrane-bound G-proteins and inhibited basal, forskolin- and hormone-stimulated adenylyl cyclase activity in DDT(1)-MF-2 cell membranes. In contrast to G-protein coupled receptor-mediated activation of heterotrimeric G-proteins in DDT(1)-MF-2 cell membrane preparations, the action of the NG-GPA was not altered by treatment of the cells with pertussis toxin. ADP-ribosylation of purified brain G-protein also failed to alter the increase in GTPgammaS binding elicited by the NG-GPA. Thus, the NG-GPA acts in a manner distinct from that of a G-protein coupled receptor and other recently described receptor-independent activators of G-protein signaling. These data indicate the presence of unexpected regulatory domains on G(i)/G(o) proteins and suggest the existence of pertussis toxin-insensitive modes of signal input to G(i)/G(o) signaling systems.  相似文献   

7.
During early embryonic development, many inductive interactions between tissues depend on signal transduction processes. We began to test the possibility that G-proteins participate in the signal transduction pathways that mediate neural induction. The expression during Xenopus development of three G alpha subunits, G alpha 0, G alpha i-1 and G alpha s-1, was characterized. The three maternally expressed genes showed different expression patterns during early development. Whole-mount in situ hybridization revealed that all three genes were expressed almost exclusively in the gastrula ectoderm and predominantly in the neuroectoderm in the neurula embryo. In order to investigate the involvement of these proteins in neural induction, we overexpressed the G-protein alpha subunits by injecting the G alpha mRNAs into fertilized eggs. Overexpression of G alpha s-1 increased the ability of gastrula ectoderm to become induced to neural tissue approximately four-fold. Overexpression of G alpha 0 and G alpha i-1 had less pronounced effects on neural competence, and inhibition of the G alpha 0 and G alpha i-1 proteins by pertussis toxin did not change the neural competence of the exposed gastrula ectoderm. Overexpression of the G alpha 0 and G alpha i-1 genes did, however, inhibit the normal disappearance of the blastocoel during gastrulation, suggesting a role for these G-proteins in regulating this process. The data also suggest a specific role for the G alpha s subunit in mediating the initial phases of neural induction.  相似文献   

8.
Jones  David T. 《Chemical senses》1990,15(3):333-340
Several lines of evidence suggest that, for certain odorants,olfactory signal transduction may be mediated by a stimulatoryG-protein coupled adenylate cyclase cascade. Two stimulatoryG-proteins, Golf and Gs, are expressed in olfactory tissue.To evaluate their relative contributions to the process of odorantsignal transduction, specific antisera were used to determinethe distribution and relative abundance of Golf and Gs in ratolfactory neuroepithelium and olfactory sensory cilia. Theseanalyses demonstrate that (1) Golf is far more abundant thanGs in olfactory neuroepithelium and (2) Golf is essentiallythe only stimulatory G-protein present in olfactory sensorycilia. 1Present address: Gene Expression Laboratory, The Salk Institute,PO Box 85800, San Diego, CA 92138, USA  相似文献   

9.
Chemosensory systems in vertebrates employ G protein-coupled receptors as sensors. In mammals, several families of olfactory and gustatory receptors as well as specific G alpha proteins coupling to them have been identified, for example, gustducin for taste. Orthologous receptor families have been characterized in fish, but the corresponding G alpha genes have not been well investigated so far. We have performed a comprehensive search of several lower vertebrate genomes to establish the G alpha protein family in these taxa and to identify those genes that may be involved in chemosensory signal transduction in fish. We report that gustducin is absent from the genomes of all teleost and amphibian species analyzed, presumably due to independent gene losses in these lineages. However, 2 other G alpha genes, Gi1b and G14a, are expressed in zebrafish taste buds and 4 G proteins, Go1, Go2, Gi1b, and Golf2, were detected in the olfactory epithelium. Golf2, Gi1b, and G14a are expressed already shortly after hatching, consistent with the physiological and behavioral responses of larvae to odorants and tastants. Our results show general similarity to the mammalian situation but also clear-cut differences and as such are essential for using the zebrafish model system to study chemosensory perception.  相似文献   

10.
Heterotrimeric G-protein signaling systems are activated via cell surface receptors possessing the seven-membrane span motif. Several observations suggest the existence of other modes of stimulus input to heterotrimeric G-proteins. As part of an overall effort to identify such proteins we developed a functional screen based upon the pheromone response pathway in Saccharomyces cerevisiae. We identified two mammalian proteins, AGS2 and AGS3 (activators of G-protein signaling), that activated the pheromone response pathway at the level of heterotrimeric G-proteins in the absence of a typical receptor. beta-galactosidase reporter assays in yeast strains expressing different Galpha subunits (Gpa1, G(s)alpha, G(i)alpha(2(Gpa1(1-41))), G(i)alpha(3(Gpa1(1-41))), Galpha(16(Gpa1(1-41)))) indicated that AGS proteins selectively activated G-protein heterotrimers. AGS3 was only active in the G(i)alpha(2) and G(i)alpha(3) genetic backgrounds, whereas AGS2 was active in each of the genetic backgrounds except Gpa1. In protein interaction studies, AGS2 selectively associated with Gbetagamma, whereas AGS3 bound Galpha and exhibited a preference for GalphaGDP versus GalphaGTPgammaS. Subsequent studies indicated that the mechanisms of G-protein activation by AGS2 and AGS3 were distinct from that of a typical G-protein-coupled receptor. AGS proteins provide unexpected mechanisms for input to heterotrimeric G-protein signaling pathways. AGS2 and AGS3 may also serve as novel binding partners for Galpha and Gbetagamma that allow the subunits to subserve functions that do not require initial heterotrimer formation.  相似文献   

11.
We have shown that progesterone (10 pM-10 nM) and progesterone covalently bound to bovine serum albumin (P-CMO BSA; 100 pM-1 microM) rapidly increased (within 5 s) the cytosolic free Ca(2+) concentration and inositol 1,4,5 trisphosphate (InsP(3)) formation in confluent female and male rat osteoblasts via a pertussis toxin-insensitive G-protein. The activation of G-proteins coupled to effectors such as phospholipase C (PLC) is an early event in the signal transduction pathway leading to InsP(3) formation. We used antibodies against the various PLC isoforms to show that only PLC-beta1 and PLC-beta 3 were involved in the Ca(2+) mobilization and InsP(3) formation induced by both progestins in female and male osteoblasts, whereas PLC-beta 2, PLC-gamma 1, and PLC-gamma 2 were not. We also used antibodies against the subunits of heterotrimeric G-proteins to show that the activation of PLC-beta 1 and PLC-beta 3 by both progestins involved the G alpha q/11 subunit, which was insensitive to pertussis toxin, whereas G alpha i, G alpha s, and G beta gamma subunits were not. The membrane effects were independent of the concentration of nuclear progesterone receptor, because the concentration of nuclear progesterone receptors was lower in male than in female osteoblasts. These data suggest that progesterone and P-CMO BSA, which does not enter the cell, directly activate G-protein leading to the very rapid formation of second messengers without involving the nuclear receptor.  相似文献   

12.
Ukhanov K  Bobkov Y  Ache BW 《Cell calcium》2011,49(2):100-107
We show that lobster olfactory receptor neurons (ORNs), much like their vertebrate counterparts, generate a transient elevation of intracellular calcium (Ca(i)) in response to odorant activation that can be used to monitor ensemble ORN activity. This is done in antennal slice preparation in situ maintaining the polarity of the cells and the normal micro-environment of the olfactory cilia. The Ca(i) signal is ligand-specific and increases in a dose-dependent manner in response to odorant stimulation. Saturating stimulation elicits a robust increase of up to 1 μM free Ca(i) within 1-2s of stimulation. The odor-induced Ca(i) response closely follows the discharge pattern of extracellular spikes elicited by odorant application, with the maximal rise in Ca(i) matching the peak of the spike generation. The Ca(i) signal can be used to track neuronal activity in a functional subpopulation of rhythmically active ORNs and discriminate it from that of neighboring tonically active ORNs. Being able to record from many ORNs simultaneously over an extended period of time not only allows more accurate estimates of neuronal population activity but also dramatically improves the ability to identify potential new functional subpopulations of ORNs, especially those with more subtle differences in responsiveness, ligand specificity, and/or transduction mechanisms.  相似文献   

13.
Cell to cell communication by many hormones and neurotransmitters involves three major entities: receptor (R), G-protein (G), and effector molecule (E). Plasticity in this system is conferred by the existence of each entity as isoforms or closely related subtypes that are expressed in a tissue-specific and developmentally regulated manner. Factors that determine signal specificity in this system are poorly understood. Such factors include the relative affinity and stoichiometry of R-G or G-E and the possible colocalization of R-G-E in cellular microdomains. Utilizing the alpha 2-adrenergic receptor (alpha 2-AR) system as a representative subfamily of this class of signal transducers, we determined the relative importance of these factors. By analysis of R-G coupling in mammalian cells cotransfected with alpha 2-AR genes and G alpha cDNA, we demonstrate preferential coupling between an alpha 2-AR subtype and Go. Our data implicate R-G affinity as an important determinant of signal transduction specificity and indicate that a critical level of Go alpha is required for coupling. This report indicates the utility of R-G cotransfection in mammalian cells as a "natural environment model" to characterize events occurring at the R-G and G-E interface.  相似文献   

14.
15.
Adenylyl cyclase signaling system (ACS) of the higher eukaryotes involves the following main components: receptor, heterotrimeric G protein, adenylyl cyclase (AC), and protein kinase A. At present, these components have been found in cells of different species of the lower eukaryotes. Hence, the signal transduction through ACS of unicellular eukaryotes may have some features in common with those of the higher eukaryotes. We showed earlier that agonists of adrenergic receptors (ARs) regulate AC activity of ciliates Dileptus anser and Tetrahymena pyriformis. The aim of this work was to study molecular mechanisms of AR ligand action on the functional activity of different components of ACS of the ciliates. It has been shown that beta-AR antagonist [3H]-dihydroalprenolol binds membranes of the ciliates with a comparatively lower affinity than those of the higher eukaryotes (Kd for D. anser was 13.4 nM, for T. pyriformis--27 nM). Beta-AR ligands--agonist (-)-isoproterenol and antagonists propranolol and atenolol in competition manner displace [3H]-dihydroalprenolol with IC50 that are 10-100 times higher than corresponding IC50 of beta-AR of the higher eukaryotes. In the presence of GTP, the right shift of competition curves of [3H]-dihydroalprenolol displacement by isoproterenol was obtained, being most considerable in the case of D. anser. Adrenaline and isoproterenol in a dose-dependent manner stimulated GTP-binding in cell cultures of D. anser and T. pyriformis. Suramin (10(-5) M), the inhibitor of heterotrimeric G proteins, completely blocked effects of these hormones. In D. anser culture, adrenaline and isoproterenol in a dose-dependent manner, stimulated AC activity, and its stimulating effects in the presence of beta-AR blockers vanished (propranolol) or decreased to a great extent (atenolol). At the same time the effects were unchanged in the presence of alpha2-AR antagonists yohimbine and idazoxan. These data show the involvement of G protein-coupled beta-AR in signal transduction induced by AR agonists in D. anser cells. In cell culture of T. pyriformis isoproterenol weakly stimulated AC activity, and its effect was completely blocked by beta-AR blockers. Adrenaline in T. pyriformis cells in a dose-dependent manner inhibited AC activity. Inhibiting effect of hormone was decreased in the presence of alpha2-AR blockers. On the basis of the obtained data we concluded that adrenaline in T. pyriformis cells inhibited AC activity through G protein-coupled receptor, being close to alpha2-AR of vertebrate animals.  相似文献   

16.
The integrity of hippocampal G-protein mediated signalling following ibotenate induced lesion of the medial septum was examined. The lesion was confined histologically to the septum and induced a 23% reduction in hippocampal choline acetyltransferase (ChAT) activity and G-proteins levels and related enzyme activities were measured in the hippocampus following a 21 day survival period. The relative levels of five G-protein subunits (Gbeta, G(alpha)o, G(alpha)i1, G(alpha)i2, and G(alpha)s-L), basal GTPase, the degree of carbachol- or baclofen-stimulated GTPase activities, and the basal and fluoroaluminate-stimulated adenylate cyclase activities were apparently unaffected. To determine if our assay methodology was sensitive to changes in pre-synaptic signalling, we compared G-protein density in synaptosomes with total hippocampal homogenates. The concentration of G(alpha)q/11, G(alpha)i1, and G(alpha)i2. were significantly lower in synaptosomes, while G(alpha)o, was only marginally reduced. Thus, modest lesions of the medial-septal nucleus fail to alter G-protein signalling. However, our findings that G-protein density is lower in synaptosomal membranes than in total homogenates, indicates that the analysis of signalling events in synaptosomes following deafferentation could clarify adaptive changes which may occur at the presynaptic level.  相似文献   

17.
FSH interacts with a guanine nucleotide-binding protein (G-protein)-coupled receptor, which in turn modulates signal transduction via the G-protein subunit alpha s. However, it is unknown whether FSH regulates alpha-subunit gene expression and whether G-protein alpha-subunit genes other than alpha s are modulated in FSH-stimulated signal transduction. Regulation of mRNA for alpha s and alpha i-2 was studied in primary cultures of rat Sertoli cells because these proteins are linked to the control of adenylyl cyclase. In addition, mRNA for alpha i-1 and alpha i-3 were quantified because these proteins are putatively linked to ion channels but have not been well characterized in the Sertoli cell. Northern blot analyses demonstrated that FSH induced a dose-dependent increase in steady state levels of alpha i-3 mRNA. In contrast, FSH caused a dose-dependent decrease in levels of alpha i-1 and alpha i-2 mRNA. No significant effect of FSH on alpha s mRNA levels was detectable. The time course of FSH effects showed a 75% decrease in alpha i-1 mRNA levels, a 50% decrease in alpha i-2 mRNA levels and a nearly 3-fold increase in levels of alpha i-3 mRNA between 4-6 h of treatment with 100 ng/ml FSH. Steady state levels of alpha i-1 and alpha i-2 mRNA returned to pretreatment levels after 10 h FSH treatment, while alpha i-3 mRNA returned to a new steady state level approximately 50% greater than the pretreatment level.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Regulators of G-protein signaling (RGSs) are negative regulators of G-protein coupled receptor (GPCR)-mediated signaling that function to limit the lifetime of receptor-activated G(alpha)-proteins. Here we show that four mammalian RGSs differentially inhibit the activation of a FUS1--LacZ reporter gene by the STE2 encoded GPCR in yeast. In order to examine the role of the GPCR in modulating RGS function, we functionally expressed the human somatostatin receptor 5 (SST(5)) in yeast. In the absence of RGSs, FUS1--LacZ activation in response to somatostatin increased in a dose-dependent manner in cells expressing SST(5). In contrast to the results obtained with Ste2p, all RGSs completely inhibited SST(5)-mediated signaling even at concentrations of agonist as high as 10(minus sign5) M. The ability of RGSs to inhibit SST(5) signaling was further assessed in cells expressing modified Gpa1 proteins. Even though SST(5)-mediated FUS1--LacZ activation was 5-fold more efficient with a Gpa1p/G(i3alpha) chimera, response to somatostatin was completely abolished by all four RGSs. Furthermore, we demonstrate that RGS1, RGS2 and RGS5 have reduced ability to inhibit SST(5)-mediated activation of the RGS-resistant Gpa1p(Gly302Ser) mutant suggesting that the ability to interact with the G(alpha)-protein is required for the inhibition of signaling. Taken together, our results indicate that RGSs serve as better GAPs for Gpa1p when activated by SST(5) than when this G-protein is activated by Ste2p.  相似文献   

19.
Plants perceive and respond to a profusion of environmental and endogenous signals that influence their growth and development. The G-protein signalling pathway is a mechanism for transducing extracellular signals that is highly conserved in a range of eukaryotes and prokaryotes. Evidence for the existence of G-protein signalling pathways in higher plants is reviewed, and their potential involvement in plant hormone signal transduction evaluated. A range of biochemical and molecular studies have identified potential components of G-protein signalling in plants, most notably a homologue of the G-protein coupled receptor superfamily (GCR1) and the G alpha and G beta subunits of heterotrimeric G-proteins. G-protein agonists and antagonists are known to influence a variety of signalling events in plants and have been used to implicate heterotrimeric G-proteins in gibberellin and possibly auxin signalling. Antisense suppression of GCR1 in Arabidopsis leads to a phenotype which supports a role for this receptor in cytokinin signalling. These observations suggest that higher plants have at least some of the components of G-protein signalling pathways and that these might be involved in the action of certain plant hormones.  相似文献   

20.
G-protein-coupled receptors transduce their signals through G-protein subunits which in turn are subject to modulation by other intracellular proteins such as the regulators of G-protein signaling (RGS) proteins. We have developed a cell-free, homogeneous (mix and read format), time-resolved fluorescence resonance energy transfer (TR-FRET) assay to monitor heterotrimeric G-protein subunit interactions and the interaction of the G alpha subunit with RGS4. The assay uses a FRET pair consisting of a terbium cryptate chelate donor spectrally matched to an Alexa546 fluor acceptor, each of which is conjugated to separate protein binding partners, these being G alpha(i1):beta4gamma2 or G alpha(i1):RGS4. Under conditions favoring specific binding between labeled partners, high-affinity interactions were observed as a rapid increase (>fivefold) in the FRET signal. The specificity of these interactions was demonstrated using denaturing or competitive conditions which caused significant reductions in fluorescence (50-85%) indicating that labeled proteins were no longer in close proximity. We also report differential binding effects as a result of altered activation state of the G alpha(i1) protein. This assay confirms that interactions between G-protein subunits and RGS4 can be measured using TR-FRET in a cell- and receptor-free environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号