首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The labeling strategy with gold nanoparticles for the conventional surface plasmon resonance (SPR) signal enhancement has been frequently used for the sensitive determination of small molecules binding to its interaction partners. However, the influence of gold nanoparticles with different size and shape on SPR signal is not known. In this paper, three kinds of gold nanoparticles, namely nanorods, nanospheres, and nanooctahedrons with different size, were prepared and used to investigate their effects on the conventional SPR signal at a fixed excitation wavelength 670 nm. It was found that the SPR signal (i.e., resonant angle shift) was varied with the shapes and sizes of gold nanoparticles in suspension at a fixed concentration due to their different plasmon absorbance bands. For gold nanorods with different longitudinal absorbance bands, three conventional SPR signal regions could be clearly observed when the gold nanorod suspensions were separately introduced onto the SPR sensor chip surface. One region was the longitudinal absorbance bands coinciding with or close to the SPR excitation wavelength that suppressed the SPR angle shift. The second region was the longitudinal absorbance bands at 624 to 639 and 728 to 763 nm that produced a moderate increase on the SPR resonant angle shift. The third region was found for the longitudinal absorbance bands from 700 to 726 nm that resulted in a remarkable increase in the SPR angle shift responses. This phenomenon can be explained on the basis of calculation of the correlation of SPR angle shift response with the gold nanorod longitudinal absorbance bands. For nanospheres and nanooctahedrons, the SPR angle shift responses were found to be particle shape and size dependent in a simple way with a sustaining increase when the sizes of the nanoparticles were increased. Consequently, a guideline for choosing gold nanoparticles as tags is suggested for the SPR determination of small molecules with binding to the immobilized interaction partners.  相似文献   

2.
A surface plasmon resonance (SPR)-immunosensor for detection of benzo[a]pyrene (BaP) is developed by using a model BaP-hapten compound, BaP-bovine serum albumin conjugate (BaP-BSA), and an anti-BaP-BSA monoclonal antibody. BaP-BSA conjugate is immobilized on a gold thin-film sensor chip by means of simple physical adsorption. The number of BaP-hapten units in BaP-BSA conjugate is estimated to be 28 from the difference in molecular weight (MW) between BaP-BSA conjugate and BSA based on the results of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) measurement. Anti-BaP-BSA antibody on contact with the BaP-BSA conjugate immobilized sensor chip causes an increase in the incident angle of the sensor chip. Binding of anti-BaP-BSA antibody with surface-immobilized BaP-BSA conjugate is inhibited by the presence of BaP in analyte solution, because of the inhibition effect of BaP. The SPR immunosensor for BaP functioning with the indirect competitive immunoreaction of anti-BaP-BSA antibody between the analyte (BaP) in testing solution and the BaP-BSA conjugate immobilized on the sensor chip provides a rapid determination (response time: ca. 15 min) of BaP in the concentration range of 0.01-1000 ppb. The antibody anchored to the sensor chip by antigen-antibody binding is removed on treatment with a pepsin solution (pH 2.0) for few minutes. The SPR sensor chip is found to be reusable for more than 20 times with a little decrease (<7%) in the sensor response. Detection of BaP by direct competitive immunoreactions is also carried out by enzyme-linked immunosorbent assay (ELISA). The concentration of BaP could be determined as low as 0.01 ppb and 2 ppb using the SPR sensor and the ELISA method, respectively. The SPR sensor is found to detect BaP selectively in the presence of 2-hydroxybiphenyl (HBP); the incident angle shift of the SPR sensor for BaP is found to be same irrespective to the presence or the absence of a same concentration (as much as 30 ppb) of HBP together.  相似文献   

3.
In this study, an immunosensor chip utilizing surface plasmon resonance (SPR) and cyclic voltammetry (CV) was fabricated for detecting carcinoembryonic antigen (CEA). Specifically, we applied in parallel an SPR instrument and a CV device to monitor the assembly of carcinoembryonic antibody (anti-CEA) on a protein A-conjugated surface and the subsequent ligand reaction. The immunosensor chips were constructed by various concentrations of protein A. To determine the surface characteristics of different self-assembly monolayers (SAMs), several quantitative and kinetic measurements were carried out. The extent of immobilization of anti-CEA and the immune response of anti-CEA antibody against CEA were measured using the SPR instrument and CV device. The terminal functional groups of protein A have different effects on the adsorption and covalent binding of immunoprotein depending on the steric hindrance. Through the parallel measurements, we demonstrate that SPR and CV are sensitive to measure the antigen–antibody binding capacity.  相似文献   

4.
A method of immobilizing clenbuterol (CLEN) on the sensor chip for spectral surface plasmon resonance imaging (SPRi) was experimentally investigated. The bioprobes on the sensor chip were prepared by immobilizing bovine serum albumin (BSA) protein and conjugating CLEN molecules to BSA, which provides more active points and free orientations for specific binding. The calibration curve showed that the wavelength resonance shift decreased as the concentration of CLEN analyte increased, consistent with the inhibition principle. The limit of detection (LOD) was estimated to be 6.32 μg/ml. This method proved to be highly specific, high throughput, label free, and operationally convenient.  相似文献   

5.
A biosensor based on surface plasmon resonance (SPR) is developed for the detection of 2-hydroxybiphenyl (HBP). A monoclonal antibody against HBP (abbreviated hereafter as HBP-mAb) is developed and used for the detection of HBP by competitive SPR-based immunoassay and enzyme linked immunosorbent assay (ELISA) methods. A novel HBP-hapten compound, HBP-bovine serum albumin conjugate (HBP-BSA), derived by binding several HBP units with BSA by an aliphatic chain spacer is used in the development of antibody and for the functionalization of immunoprobes. HBP-BSA linked to the Au surface of the SPR sensor chip undergoes inhibitive immunoreaction with HBP-mAb in the presence of free HBP. The SPR-based immunoassay provides a rapid determination (response time: approximately 20 min) of the concentration of HBP in the range of 0.1-1000 ppb (ng/ml). Regeneration of the sensor chip is gained by treating the antibody-anchored SPR sensor chip with a pepsin solution (100 ppm (microg/ml); pH 2.0) for few minutes. The SPR sensor chip is reusable for the detection of HBP for more than 20 cycles with average loss of 0.35% reactivity per regeneration step. HBP concentration is determined as low as 0.1 and 3 ppb using the SPR sensor and ELISA measurements, respectively. The developed SPR sensor for HBP is free from interference by coexisting benzo[a]pyrene (BaP), 2,4-dichlorophenoxyacetic acid (2,4-D) and benz[a]anthracene; SPR angle shift obtained to the flow of HBP is almost same irrespective to the presence or absence of a same concentration of these carcinogenic polycyclic aromatic hydrocarbons together. The SPR sensor for HBP is proved to be applicable in simultaneous detection of HBP and BaP in parallel with another SPR sensor for BaP.  相似文献   

6.
There is a constant need to identify novel inhibitors to combat β-lactamase-mediated antibiotic resistance. In this study, we identify three penicillinase-binding peptides, P1 (DHIHRSYRGEFD), P2 (NIYTTPWGSNWS), and P3 (SHSLPASADLRR), using a phage display library. Surface plasmon resonance (SPR) is utilized for quantitative determination and comparison of the binding specificity of selected peptides to penicillinase. An SPR biosensor functionalized with P3-GGGC (SHSLPASADLRRGGGC) is developed for detection of penicillinase with excellent sensitivity (15.8 RU nM−1) and binding affinity (KD = 0.56 nM). To determine if peptides can be good inhibitors for penicillinase, these peptides are mixed with penicillinase and their inhibition efficiency is determined by measuring the hydrolysis of substrate penicillin G using UV–vis spectrophotometry. Peptide P2 (NIYTTPWGSNWS) is found to be a promising penicillinase inhibitor with a Ki of 9.22 μM and a Ki′ of 33.12 μM, suggesting that the inhibition mechanism is a mixed pattern. This peptide inhibitor (P2) can be used as a lead compound to identify more potent small molecule inhibitors for penicillinase. This study offers a potential approach to both detection of β-lactamases and development of novel inhibitors of β-lactamases.  相似文献   

7.
A batch-type antibody-immobilized quartz crystal microbalance (QCM) system for detecting chloramphenicol (CAP) was developed. To bind an anti-CAP antibody onto the gold electrode surface of piezoelectric crystals, self-assembled monolayers (SAMs) of different thiols or sulfides were formed by a chemisorption procedure. Then, the anti-CAP antibody was covalently linked to the pre-formed monolayers by an activation procedure using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride and N-hydroxysulfosuccinimide. The antibody-immobilized QCM chip thus prepared was installed in a well holder and was measured for sensor response. Compared with the bare QCM chip and the QCM chip only coated with 3-mercaptopropionic acid (MPA), the antibody-immobilized sensor showed greatly enhanced frequency shifts by 10-50-fold after CAP injection. In this case, CAP detection which was indicated by steady-state resonant frequency shift was accomplished within 10 min. When CAP solution was injected into the reaction cell in 50mM concentration, the frequency shifts obtained were, respectively, 530 and 505 Hz in case of thiosalicylic acid and MPA immobilization. Repeated use of the sensor chips up to eight times was possible after 1 min regeneration with 0.1M NaOH. This system demonstrated a potential application of thiol or sulfide mediated SAMs as the pre-coatings of a real-time detection on CAP in solution.  相似文献   

8.

We demonstrate plasmon coupling phenomenon between equivalent (homodimer) and non-equivalent (heterodimer) spherical shape noble metal nanoparticle (Ag, Au and Al). A systematic comparison of surface plasmon resonance (SPR) and extinction properties of various configurations (monomer, homodimer and heterodimer) has been investigated to observe the effect of compositional asymmetry. Numerical simulation has been done by using discrete dipole approximation method to study the optical properties of plasmonically coupled metal nanoparticles (MNPs). Plasmon coupling between similar nanoparticles allows only higher wavelength bonding plasmon mode while both the plasmon modes lower wavelength antibonding mode as well as higher wavelength bonding mode in the case of heterodimer. Au monomer of radius 50 nm shows resonance peak at 518 nm while plasmon coupling between Au-Au homodimer results in a spectral red shift around 609 nm. Au-Ag plasmonic heterodimer (radius 50 nm) reveals two resonant modes corresponding to higher energy antibonding mode (422 nm) as well as lower energy bonding mode (533 nm). Further, we have shown that interparticle edge-to-edge separation is the most significant parameter affecting the surface plasmon resonances of MNPs. As the inter particle separation decreases, resonance wavelength shows red spectral shift which is maximum for the touching condition. It is shown that plasmon coupling is a reliable strategy to tune the SPR.

  相似文献   

9.
10.
In this paper we describe the use of a commercial surface plasmon resonance (SPR) imaging instrument for monitoring the binding of biomolecules on user-defined regions of interest of a microarray. By monitoring the angle shift of the SPR-dip using a continuous angle-scanning mode instead of monitoring the change in reflectivity at a fixed angle, a linear relationship with respect to the mass density change on the surface will remain over a wide dynamic angle range of 8 degrees. Peptides (2.4 kDa) and proteins (150 kDa) were both spotted on the same sensor chip to illustrate that both, low and high molecular weight ligands with initial large differences in off-set SPR angles, can be applied within the same experiment. By using a fluorescently labeled antibody, SPR results can be confirmed by means of fluorescence microscopy after completion of a SPR experiment. SPR imaging in angle-scanning operation provides sensitive, accurate, and label-free detection of analyte binding on microarrays containing different molecular weight ligands.  相似文献   

11.
To construct a novel simultaneous SPR and QCM sensing system, an AT-cut quartz crystal is fabricated by sputtering 250 nm of ITO on one side of the quartz plate over a 5-nm thick underlay of titanium, while a 50-nm thick layer of gold is sputter-deposited on the other side to induce a total light reflection of an incident laser beam on the thin gold layer. The signals of the sensing system are detected using a Handy-SPR and QCA922 when dropping 200 μL of Milli-Q water into the sensing cell. A decrease in the SPR reflected light intensity is clearly identified. In the same experiment, the changes in the resonant frequency and resistance are about 2 kHz and 200 Ω, respectively. Furthermore, the oscillation stabilities of the resonant frequency and resistance are about 50 Hz and 2 Ω, respectively, which are sufficient to detect a large mass change on the QCM/SPR chip.  相似文献   

12.
Summary The stability in the soil of a new penicillin (methicillin) which is resistant to staphylococcal penicillinase, has been investigated. The results revealed its inactivation in both sterile and non-sterile soils of p H 7.4–7.6, with indication of biological inactivation in the latter.Three strains identified as Pseudomonas spp., were isolated by enrichment technique from the soil, and were found able to inactivate methicillin through production of an exocellular enzyme destructable at 90°C. Such an enzyme proved to be a type of penicillinase that inactivated benzyl penicillin more actively than methicillin.  相似文献   

13.
A surface plasmon resonance (SPR) waveguide immunosensor fabricated by germanium-doped silicon dioxide was investigated in this study. The designed waveguide sensor consisted of a 10 microm SiO(2) substrate layer (n=1.469), a 10 microm Ge-SiO(2) channel guide (n=1.492) and a 50 nm gold film layer for immobilization of biomolecules and SPR signal detection. The resultant spectral signal was measured by a portable spectrophotometer, where the sensor was aligned by a custom-designed micro-positioner. The results of the glycerol calibration standards showed that the resonance wavelength shifted from 628 to 758 nm due to changes of refractive index from 1.36 to 1.418. Flow-through immunoassay on waveguide sensors also showed the interactions of protein A, monoclonal antibody (mAb ALV-J) and avian leucosis virus (ALVs) resulted in wavelength shifting of 4.17, 3.03 and 2.18 nm, respectively. The SPR dynamic interaction could also be demonstrated successfully in 4 min as the sensor was integrated with a lateral flow nitrocellulose strip. These results suggest that SPR detection could be carried out on designed waveguide sensor, and the integration of nitrocellulose strip for sample filtering and fluid carrier would facilitate applications in point-of-care portable system.  相似文献   

14.
We report a novel micro-potentiometric hemoglobin (Hb) immunosensor based on electrochemically synthesized polypyrrole (PPy)–gold nanoparticles (AuNPs) composite. PPy–AuNPs film with AuNPs uniformly distributed in it was deposited on gold electrode surface by a simple and direct procedure, without the addition of any nanoparticles or reducing agent. And this generic method makes it possible to deposite different polymers on miniaturized electrodes. With the existence of AuNPs, the antibody immobilization onto the electrode surface was facilitated. Morphology study by field emission scanning electron microscope (FE-SEM) confirms the presence of AuNPs in PPy. Based on an ion-sensitive field-effect transistors (ISFETs) integrated chip, a micro-potentiometric immunosensor for Hb and hemoglobin-A1c (HbA1c) has been constructed. The sensor response was linear over the concentration range 60–180 μg/ml Hb and 4–18 μg/ml HbA1c. The Hb concentration in whole blood samples has also been analysed, with a linear dose–response behavior between 125 and 197 μg/ml and a sensitivity of 0.20 mV μg−1 ml. The measuring ranges of the developed Hb and HbA1c immunosensors meet the clinical demand for measuring the HbA1c/Hb ratio of 5–20%. This sensor results in simple and rapid differential measurement of Hb and HbA1c, and has great potential to become an inexpensive and portable device for monitoring of diabetes.  相似文献   

15.
A simple and rapid continuous-flow immunosensor based on surface plasmon resonance (SPR) has been developed for detection of insulin as low as 1 ng ml-1 (ppb) with a response time of less than 5 min. At first, a heterobifunctional oligo(ethyleneglycol)-dithiocarboxylic acid derivative (OEG-DCA) containing dithiol and carboxyl end groups was used to functionalize the thin Au-film of SPR chip. Insulin was covalently bound to the Au-thiolate monolayer of OEG-DCA for activating the sensor surface to immunoaffinity interactions. An on-line competitive immunosensing principle is examined for detection of insulin, in which the direct affinity binding of anti-insulin antibody to the insulin on sensor surface is examined in the presence and absence of various concentrations of insulin. Immunoreaction of anti-insulin antibody with the sensor surface was optimized with reference to antibody concentration, sample analysis time and flow-rate to provide the desired detection limit and determination range. With the immunosensor developed, the lowest detectable concentration of insulin is 1 ng ml-1 and the determination range covers a wide concentration of 1-300 ng ml-1. The developed OEG-monolayer based sensor chip exhibited high resistance to non-specific adsorption of proteins, and an uninterrupted highly sensitive detection of insulin from insulin-impregnated serum samples has been demonstrated. After an immunoreaction cycle, active sensor surface was regenerated simply by a brief flow of an acidic buffer (glycine.HCl; pH 2.0) for less than 1 min. A same sensor chip was found reusable for more than 25 cycles without an appreciable change in the original sensor activity.  相似文献   

16.
A novel phage library has been prepared using the Escherichia coli genome digested with three restriction enzymes. The resulting DNA fragments were ligated to the expression vector pCANTAB5 to obtain the library of recombinant M13 phages displaying relatively long exogenous peptides. The library was screened to isolate recombinant phages with high affinity to alkaline phosphatase (AP) from calf intestine. After four rounds of panning three phages (AP1, AP2 and AP3) were shown to have specific binding properties toward AP by enzyme-linked immunosorbent assay. The phages were further characterized by surface plasmon resonance (SPR). Among the three phages AP3 bound the AP-immobilized sensor chip most and caused the highest resonant angle shift. The sensor response decreased with the decrease of the concentration of AP3 added. Furthermore, displacement of AP3 from the AP-immobilized sensor chip was observed upon injection of AP solution to the SPR system, whereas injection of bovine serum albumin solution led to the great increase of the sensor response. This result indicates the specific binding of AP3 to AP.  相似文献   

17.
Antigen–antibody interactions are critical for understanding antigen–antibody associations in immunology. To shed further light on this question, we studied a dissociation of the 19D9D6-HCV core protein antibody complex structure. However, forced separations in single molecule experiments are difficult, and therefore molecular simulation techniques were applied in our study. The stretching, that is, the distance between the center of mass of the HCV core protein and the 19D9D6 antibody, has been studied using the potential of mean force calculations based on molecular dynamics and the explicit water model. Our simulations indicate that the 7 residues Gly70, Gly72, Gly134, Gly158, Glu219, Gln221 and Tyr314, the interaction region (antibody), and the 14 interprotein molecular hydrogen bonds might play important roles in the antigen–antibody interaction, and this finding may be useful for protein engineering of this antigen–antibody structure. In addition, the 3 residues Gly134, Gly158 and Tyr314 might be more important in the development of bioactive antibody analogs.  相似文献   

18.

The influence of TiO2 coating on resonant properties of gold nanoisland films deposited on silica substrates was studied numerically and in experiments. The model describing plasmonic properties of a metal truncated nanosphere placed on a substrate and covered by a thin dielectric layer has been developed. The model allows calculating a particle polarizability spectrum and, respectively, its surface plasmon resonance (SPR) wavelength for any given cover thickness, particle radius and truncation parameter, and dielectric functions of the particle, the substrate, the coating layer, and the surrounding medium. Dependence of the SPR position calculated for truncated gold nanospheres has coincided with the measured one for the gold nanoisland films covered with titania of different thicknesses. In the experiments, gold films with thickness of 5 nm were deposited on a silica glass substrate, annealed at 500 °C to form nanoislands of 20 nm in diameter, and covered with amorphous titania layers using atomic layer deposition technique. The resulting structures were characterized with scanning electron microscopy and optical absorption spectroscopy. The measured dependence of the SPR position on titania film thickness corresponded to the one calculated for truncated sphere-shaped nanoparticles with the truncation angle of ~50°. We demonstrated the possibility of tuning the SPR position within ~100 nm range by depositing to 30 nm thick titania layer.

  相似文献   

19.
A novel broadband refractive index nanosensor based on multi-interference of surface plasmon polaritons is reported. It is composed of a metallic nanoslit flanked by periodical grooves on its two sides. Extraordinary high-throughput, high-resolution, and high-sensitivity detections can be realized by observing the shift of the resonant wavelength. The sensor covers a large range of the refractive index change due to both the narrow linewidth of the single resonant peak in the broadband spectrum and the sensitive shift of the peak position withthe refractive index change. A theoretical model is developed to well predict the optical response of the sensor. An excellent linearity between the resonant wavelength and the refractive index can be achieved. The sensitivity, which is 620 nm/refractive index unit, can be further increased by tuning the period of the grooves and the high throughput; high resolution can be simultaneously achieved by adding the number of grooves.  相似文献   

20.
For the quantitative evaluation of low levels of an estriol metabolite of estriol (estriol-16-glucuronide (E3-16G)) in liquid media, we developed a simple and highly sensitive immunoassay using a surface plasmon resonance (SPR) biosensor which did not require any time-consuming sample pretreatment steps. E3-16G was conjugated to ovalbumin (OVA) through an oligoethylene glycol (OEG) linker to form protein conjugates (E3-16G-OEG-OVA), which were then immobilized on a carboxymethyl dextran-coated sensor chip via amine coupling to develop inhibition immunoassays. A limit of detection (LOD) of 76 pg/mL was achieved using a rabbit anti-sheep primary antibody as a binding agent. The detection limit was further improved by using synthesized gold colloids (15 nm) as high mass labels conjugated to the primary antibody. In this Au nanoparticle-enhanced assay, the concentration of E3-16G in aqueous samples could be determined in 7.5 min at a level as low as 14 pg/mL. In addition, the high stability of the E3-16G-OEG-OVA surface gave no obvious drop in antibody-binding capability after more than 1000 binding/regeneration cycles which significantly lowered the research cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号