首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Radisky ES  Lu CJ  Kwan G  Koshland DE 《Biochemistry》2005,44(18):6823-6830
A series of mutants of chymotrypsin inhibitor 2 (CI2), at residues involved in intramolecular interactions that shape and constrain the binding loop, were studied to determine their relative importance for inhibition of the serine protease subtilisin BPN', and for resistance of the inhibitor to proteolysis. These functional properties were investigated in tandem with the crystal structures of the mutant inhibitor-enzyme complexes. A dense hydrogen bonding network that supports the binding loop in the vicinity of the scissile bond was found to be important both for enzyme affinity and for stability to proteolysis. Structural analysis, in combination with biochemical measurements, allows differentiation of the structural components most important for resistance to proteolysis and/or binding. The most critical participating residues in the network were found to be Thr-58, Glu-60, Arg-65, and Gly-83. Glu-60 is more important for resistance to proteolysis than for binding, while Arg-65 and two other Arg residues play a greater role in binding than in resistance to proteolysis. Structural comparisons reveal a wide variety of subtle conformational changes in response to mutation, with built-in robustness in the hydrogen bond network, such that loss of one contact is compensated by other new contacts.  相似文献   

2.
The serine protease inhibitor chymotrypsin inhibitor 2 (CI2 or BSPI2) has been expressed in Escherichia coli with the pINIIIompA3 expression vector to produce 20-40 mg/L of culture. Recombinant CI2 purified from this system has been characterized and found to be identical with CI2 from barley. Slow-binding kinetics were observed for the interaction between CI2 and subtilisin BPN', with Ki = 2.9 x 10(-12) M. Analysis of slow-binding data indicates that binding of the inhibitor follows the simplest model of E + I = EI with no kinetically detectable intermediate steps or proteolytic cleavage of the reactive site bond in CI2 (Met-59-Glu-60). This, in agreement with crystallographic data, indicates that the enzyme-inhibitor adduct is the Michaelis complex, which is not chemically processed by the enzyme. Three mutant CI2 molecules with new P1 residues have also been examined with a range of serine proteases, including a mutant subtilisin. In agreement with earlier studies, we find the P1 amino acid an important determinant of specificity. CI2 Met----Lys-59 was found to be a temporary inhibitor of subtilisin BPN' but an effective inhibitor of subtilisin Carlsberg and subtilisin BPN'(Glu----Ser-156). The structural reasons for this are discussed in relation to mechanisms of inhibition of serine proteases.  相似文献   

3.
Radisky ES  King DS  Kwan G  Koshland DE 《Biochemistry》2003,42(21):6484-6492
A synthetic cyclic peptide, reported to be a tight-binding inhibitor of serine proteases, is instead found to be a good substrate, as is the linear peptide of the same sequence. Both of the peptides, designed to mimic the binding loop of chymotrypsin inhibitor 2 (CI2), were cleaved by subtilisin primarily at the CI2 reactive-site Met-59-Glu-60 bond, revealing that the sequence, in the absence of the structural context of the inhibitor, provides sufficient specificity for hydrolysis of this bond. Insights from the crystal structure of the CI2/subtilisin complex, together with biochemical analysis of a CI2 Gly-83 deletion mutant, have allowed us to identify key features that make CI2 an effective inhibitor, while the cyclic and linear peptides are substrates.  相似文献   

4.
Site-directed mutagenesis, including double-mutant cycles, is used routinely for studying protein-protein interactions. We now present a case analysis of chymotrypsin inhibitor 2 (CI2) and subtilisin BPN' using (i) a residue in CI2 that is known to interact directly with subtilisin (Tyr42) and (ii) two CI2 residues that do not have direct contacts with subtilisin (Arg46 and Arg48). We find that there are similar changes in binding energy on mutation of these two sets of residues. It can thus be difficult to interpret mutagenesis data in the absence of structural information.  相似文献   

5.
A procedure has been developed for the isolation and identification of mutants in the bacterial serine protease subtilisin that exhibit enhanced thermal stability. The cloned subtilisin BPN' gene from Bacillus amyloliquefaciens was treated with bisulfite, a chemical mutagen that deaminates cytosine to uracil in single-stranded DNA. Strains containing the cloned, mutagenized subtilisin gene which produced subtilisin with enhanced thermal stability were selected by a simple plate assay procedure which screens for esterase activity on nitrocellulose filters after preincubation at elevated temperatures. One thermostable subtilisin variant, designated 7150, has been fully characterized and found to differ from wild-type subtilisin by a single substitution of Ser for Asn at position 218. The 7150 enzyme was found to undergo thermal inactivation at one-fourth the rate of the wild-type enzyme when incubated at elevated temperatures. Moreover, the mid-point in the thermally induced transition from the folded to unfolded state was found to be 2.4-3.9 degrees C higher for 7150 as determined by differential scanning calorimetry under a variety of conditions. The refined, 1.8-A crystal structures of the wild-type and 7150 subtilisin have been compared in detail, leading to the conclusion that slight improvements in hydrogen bond parameters in the vicinity of position 218 result in the enhanced thermal stability of 7150.  相似文献   

6.
Abstract

Protein engineering of barley α-amylase addressed the roles of Ca2+ in activity and inhibition by barley α-amylase/subtilisin inhibitor (BASI), multiple attach in polysaccharide hydrolysis, secondary starch binding sites, and BASI hot spots in AMY2 recognition. AMY1/AMY2 isozyme chimeras faciliatated assignment of function to specific regions of the structure. An AMY1 fusion with starch binding domain and AMY1 mutants in the substrate binding cleft gave degree of multiple attack of 0.9–3.3, compared to 1.9 for wild-type. About 40% of the secondary attacks, succeeding the initial endo-attack, produced DP5-10 maltooligosaccharides in similar proportion for all enzyme variants, whereas shorter products, comprising about 25%, varied depending on the mutation. Secondary binding sites were important in both multiple attack and starch granule hydrolysis. Surface plasmon resonance and inhibition analyses indicated the importance of fully hydrated Ca2+ at the AMY2/BASI interface to strengthen the complex. Engineering of intermolecular contacts in BASI modulated the affinity for AMY2 and the target enzyme specificity.  相似文献   

7.
A synthetic peptide-based proteinase inhibitor was constructed by modeling the regions responsible for inhibition in barley chymotrypsin inhibitor 2 (CI-2). The 18-residue peptide was designed by molecular modeling, based on the crystal structure of CI-2. The amino acid sequences that interact with the proteinase were preserved, as well as residues that maintain the structure of the inhibitory loop. A disulfide bridge was introduced to force the peptide to adopt a cyclic structure. Kinetic studies on binding of the cyclic peptide to subtilisin BPN', subtilisin Carlsberg, chymotrypsin, and pancreatic elastase show that the cyclic peptide retains both the inhibition properties, the kinetic mechanism, and the specificity of the original protein inhibitor. Formation of a cyclic structure was found to be essential, and activity was abolished by reduction of the disulfide. As with CI-2, tightest binding is found to subtilisin BPN', where the Ki value for the cyclic peptide was 28 x 10(-12) M, compared with 29 x 10(-12)M for CI-2 under identical conditions. This remarkable result shows that it is possible to use a short synthetic peptide to model the molecular recognition properties of the intact protein, in this case obtaining full functionality with just 18 residues instead of 83 for CI-2.  相似文献   

8.
A serine protease inhibitor was purified from plasma of the eastern oyster, Crassostrea virginica. The inhibitor is a 7609.6 Da protein consisting of 71 amino acids with 12 cysteine residues that are postulated to form 6 intra-chain disulfide bridges. Sequencing of the cloned cDNA identified an open reading frame encoding a polypeptide of 90 amino acids, with the 19 N-terminal amino acids forming a signal peptide. No sequence similarity with known proteins was found in sequence databases. The protein inhibited the serine proteases subtilisin A, trypsin and perkinsin, the major extracellular protease of the oyster protozoan parasite, Perkinsus marinus, in a slow binding manner. The mechanism of inhibition involves a rapid binding of inhibitor to the enzyme to form a weak enzyme-inhibitor complex followed by a slow isomerization to form a very tight binding enzyme-inhibitor complex. The overall dissociation constants K(i) with subtilisin A, perkinsin and trypsin were 0.29 nM, 13.7 nM and 17.7 nM, respectively. No inhibition of representatives of the other protease classes was detected. This is the first protein inhibitor of proteases identified from a bivalve mollusk and it represents a new protease inhibitor family. Its tight binding to subtilisin and perkinsin suggests it plays a role in the oyster host defense against P. marinus.  相似文献   

9.
Subtilisins represent a large class of microbial serine proteases. To date, there are three-dimensional structures of proteinaceous inhibitors from three families in complex with subtilisins in the Protein Data Bank. All interact with subtilisin via an exposed loop covering six interacting residues. Here we present the crystal structure of the complex between the Bacillus lentus subtilisin Savinase and the barley α-amylase/subtilisin inhibitor (BASI). This is the first reported structure of a cereal Kunitz-P family inhibitor in complex with a subtilisin. Structural analysis revealed that BASI inhibits Savinase in a novel way, as the interacting loop is shorter than loops previously reported. Mutational analysis showed that Thr88 is crucial for the inhibition, as it stabilises the interacting loop through intramolecular interactions with the BASI backbone.  相似文献   

10.
蛋白质前体加工酶参与许多重要蛋白质闪体的加工成熟过程,哺乳动物来源的furin和酵母中的kexin是该家族的重要成员。首先人工合成了编码枯草杆菌蛋白酶抑制剂eglin C的基因片段,组装后在大肠杆菌中得到表达。以定点突变方法在野生型eglin C抑制活性中心的P1、P2和P4位引入碱性氨基酸残基可以将其改造为很强的furin抑制剂(Ki约10^-9mol/L),和kexin抑制剂(Ki约10^-11mol/L)。同时根据枯草杆菌蛋白酶和eglin C复合物的晶体结构,计算机同源模建了前体加工酶与eglin C突变体结构之间的相互作用,并结合实验数据得到以下结果:(1)P1位引入的碱性残基是该抑制剂活力的前提;(2)P4位碱性残基的引入可以极大地提高抑制剂活力约两个数量级;(3)P2 的碱性残基将有效提高抑制剂的活力。然而同时可以破坏抑制剂本身的稳定性。(4)野生型P3位的疏水性残基参与抑制剂活性环附近疏水核心的构成。  相似文献   

11.
The patterns of subtilisin molecular forms of streptomycin-resistant (Strr) and streptomycin-dependent (Strd) mutants of Bacillus subtilis A-50, as well as the revertants of Strd to streptomycin-independence (Str1) were studied. Strr mutants had different quantitative pattern of the same subtilisin molecular forms as compared with the initial strain A-50 (the forms with Rf 0.08, 0.16 and 0.3). In comparison with the initial strain A-50, Strd mutants and Str1 revertants revealed three additional forms of the active enzyme with Rf 0.02, 0.5 and 0.7 and the molecular weights less than 35,000, 28,000 and 20,000 respectively. It was suggested that the rate and character of the enzyme secretion of the degree of its post-translational modifications might result in the different pattern of subtilisin molecular forms produced by these streptomycin mutants.  相似文献   

12.
The barley alpha-amylase/subtilisin inhibitor (BASI) inhibits alpha-amylase 2 (AMY2) with subnanomolar affinity. The contribution of selected side chains of BASI to this high affinity is discerned in this study, and binding to other targets is investigated. Seven BASI residues along the AMY2-BASI interface and four residues in the putative protease-binding loop on the opposite side of the inhibitor were mutated. A total of 15 variants were compared with the wild type by monitoring the alpha-amylase and protease inhibitory activities using Blue Starch and azoalbumin, respectively, and the kinetics of binding to target enzymes by surface plasmon resonance. Generally, the mutations had little effect on k(on), whereas the k(off) values were increased up to 67-fold. The effects on the inhibitory activity, however, were far more pronounced, and the K(i) values of some mutants on the AMY2-binding side increased 2-3 orders of magnitude, whereas mutations on the other side of the inhibitor had virtually no effect. The mutants K140L, D150N, and E168T lost inhibitory activity, revealing the pivotal role of charge interactions for BASI activity on AMY2. A fully hydrated Ca(2+) at the AMY2-BASI interface mediates contacts to the catalytic residues of AMY2. Mutations involving residues contacting the solvent ligands of this Ca(2+) had weaker affinity for AMY2 and reduced sensitivity to the Ca(2+) modulation of the affinity. These results suggest that the Ca(2+) and its solvation sphere are integral components of the AMY2-BASI complex, thus illuminating a novel mode of inhibition and a novel role for calcium in relation to glycoside hydrolases.  相似文献   

13.
Various apoptotic signals can activate caspases 3 and 7 by triggering the L2 loop cleavage of their proenzymes. These two enzymes have highly similar structures and functions, and serve as apoptotic executioners. The structures of caspase 7 and procaspase 7 differ significantly in the conformation of the loops constituting the active site, indicating that the enzyme undergoes a large structural change during activation. To define the role of the leucine residue on the L2 loop, which shows the largest movement during enzyme activation but has not yet been studied, Leu168 of caspase 3 and Leu191 of caspase 7 were mutated. Kinetic analysis indicated that the mutation of the leucine residues sometimes improved the Km but also greatly decreased the kcat, resulting in an overall decrease in enzyme activity. The tryptophan fluorescence change at excitation/emission = 280/350 nm upon L2-L2' loop cleavage was found to be higher in catalytically active mutants, including the corresponding wild-type caspase, than in the inactive mutants. The crystal structures of the caspase 3 mutants were solved and compared with that of wild-type. Significant alterations in the conformations of the L1 and L4 loops were found. These results indicate that the leucine residue on the L2 loop has an important role in maintaining the catalytic activity of caspases 3 and 7.  相似文献   

14.
The crystal structure of subtilisin BPN' complexed with a proteinaceous inhibitor SSI (Streptomyces subtilisin inhibitor) was refined at 1.8 A resolution to an R-factor of 0.177 with a root-mean-square deviation from ideal bond lengths of 0.014 A. The work finally established that the SSI-subtilisin complex is a Michaelis complex with a distance between the O gamma of active Ser221 and the carbonyl carbon of the scissile peptide bond being an intermediate value between a covalent bond and a van der Waals' contact, 2.7 A. This feature, as well as the geometry of the catalytic triad and the oxyanion hole, is coincident with that found in other highly refined crystal structures of the complex of subtilisin Novo, subtilisin Carlsberg, bovine trypsin or Streptomyces griseus protease B with their proteinaceous inhibitors. The enzyme-inhibitor beta-sheet interaction is composed of two separate parts: that between the P1-P3 residues of SSI and the 125-127 chain segment (the "S1-3 site") of subtilisin and that between the P4-P6 residues of SSI and th 102-104 chain segment (the "S4-6 site") of subtilisin. The latter beta-interaction is unique to subtilisin. In contrast, the beta-sheet interaction previously found in the complex of subtilisin Novo and chymotrypsin inhibitor 2 or in the complex of subtilisin Carlsberg and Eglin C is distinct from the present complex in that the two types of beta-interactions are not separate. As for the flexibility of the molecules comprising the present complex, the following observations were made by comparing the B-factors for free and complexed SSI and comparing those for free and complexed subtilisin BPN'. The rigidification of the component molecules upon complex formation occurs in a very localized region: in SSI, the "primary" and "secondary" contact regions and the flanking region; in subtilisin BPN', the S1-3 and S4-6 sites and the flanking region.  相似文献   

15.
A site-directed mutagenesis strategy was employed to obtain four mutants of wheat subtilisin/chymotrypsin inhibitor (WSCI), with the aim to produce inactive forms of this protein. The mutants were expressed in Escherichia coli as fusion proteins and, after the tag removal, were purified to homogeneity. Three mutants, containing a single mutation at the sequence positions 49 or 50, were named E49S, E49P and Y50G, respectively. These mutants exhibited anti-subtilisin activities comparable to that of the wild type protein; instead, anti-chymotrypsin activity was detectable only for the mutant E49S. A fourth mutant (M48P-E49G), containing a double amino acid substitution at the inhibitor reactive site (P1–P1′), was inactive against both subtilisin and chymotrypsin. In order to investigate the interactions between the putative susceptible enzymes and the mutated forms of WSCI, we performed time-course hydrolysis experiments by incubating samples of the mutants with subtilisin–agarose and chymotrypsin–agarose, respectively. These experiments yielded information on the E/I complex formation, as well as on the timing of the cleavage pattern of some of these mutants. Molecular modeling studies were carried out with the 3D models of the mutants and of their putative complexes with subtilisin and chymotrypsin. In terms of inter- and intra-chain H-bond networks, the observations made for each theoretical E/I complex were found to be fully coherent with experimental data (kinetic and time-course hydrolysis) and supplied specific modalities of interaction of each mutant with the enzyme counterpart.  相似文献   

16.
The crystal structure of the complex formed between eglin c, an elastase inhibitor from the medical leech, and subtilisin Carlsberg has been determined at 1.2 A resolution by a combination of Patterson search methods and isomorphous replacement techniques. The structure has been refined to a crystallographic R-value of 0.18 (8-1.2 A). Eglin consists of a four-stranded beta-sheet with an alpha-helical segment and the protease-binding loop fixed on opposite sides. This loop, which contains the reactive site Leu45I--Asp46I, is mainly held in its conformation by unique electrostatic/hydrogen bond interactions of Thr44I and Asp46I with the side chains of Arg53I and Arg51I which protrude from the hydrophobic core of the molecule. The conformation around the reactive site is similar to that found in other proteinase inhibitors. The nine residues of the binding loop Gly40I--Arg48I are involved in direct contacts with subtilisin. In this interaction, eglin segment Pro42I--Thr44I forms a three-stranded anti-parallel beta-sheet with subtilisin segments Gly100--Gly102 and Ser125--Gly127. The reactive site peptide bond of eglin is intact, and Ser221 OG of the enzyme is 2.81 A apart from the carbonyl carbon.  相似文献   

17.
Multidomain proteinase inhibitors play critical roles in the defense of plants against predation by a wide range of pests. Despite a wealth of structural information on proteinase-single domain inhibitor interactions, the structural basis of inhibition by multidomain proteinase inhibitors remains poorly understood. Here we report the 2.5-A resolution crystal structure of the two-headed tomato inhibitor-II (TI-II) in complex with two molecules of subtilisin Carlsberg; it reveals how a multidomain inhibitor from the Potato II family of proteinase inhibitors can bind to and simultaneously inhibit two enzyme molecules within a single ternary complex. The N terminus of TI-II initiates the folding of Domain I (Lys-1 to Cys-15 and Pro-84 to Met-123) and then completes Domain II (Ile-26 to Pro-74) before coming back to complete the rest of Domain I (Pro-84 to Met-123). The two domains of TI-II adopt a similar fold and are arranged in an extended configuration that presents two reactive site loops at the opposite ends of the inhibitor molecule. Each subtilisin molecule interacts with a reactive site loop of TI-II through the standard, canonical binding mode. Remarkably, a significant distortion of the active site of subtilisin is induced by the presence of phenylalanine in the P1 position of reactive site loop II of TI-II. The structure of the TI-II.(subtilisin)2 complex provides a molecular framework for understanding how multiple inhibitory domains in a single Potato II type proteinase inhibitor molecule from the Potato II family act to inhibit proteolytic enzymes.  相似文献   

18.
The X-ray structure determination, refinement and comparison of two crystal forms of a variant (Asn115Arg) of the alkaline protease from Bacillus alcalophilus is described. Under identical conditions crystals were obtained in the orthorhombic space group P2(1)2(1)2(1) (form I) and the rhombohedral space group R32 (form II). For both space groups the structures of the protease were solved by molecular replacement and refined at 1.85 A resolution. The final R-factors are 17.9% and 17.1% for form I and form II, respectively. The root-mean-square deviation between the two forms is 0.48 A and 0.86 A for main-chain and side-chain atoms, respectively. Due to differences in crystal lattice contacts and packing, the structures of the two crystal forms differ in intermolecular interaction affecting the local conformation of three flexible polypeptide sequences (Ser50-Glu55, Ser99-Gly102, Gly258-Ser259) at the surface of the protein. While the two overall structures are very similar, the differences are significantly larger than the errors inherent in the structure determination. As expected, the differences in the temperature factors in form I and II are correlated with the solvent accessibility of the corresponding amino acid residues. In form II, two symmetry-related substrate binding sites face each other, forming a tight intermolecular interaction. Some residues contributing to this intermolecular interaction are also found to be involved in the formation of the complex between subtilisin Carlsberg and the proteinaceous inhibitor eglin C. This demonstrates that the two symmetry-related molecules interact with each other at the same molecular surface area that is used for binding of substrates and inhibitors.  相似文献   

19.
Human angiotensin-converting enzyme is an important drug target for which little structural information has been available until recent years. The slow progress in obtaining a crystal structure was due to the problem of surface glycosylation, a difficulty that has thus far been overcome by the use of a glucosidase-1 inhibitor in the tissue culture medium. However, the prohibitive cost of these inhibitors and incomplete glucosidase inhibition makes alternative routes to minimizing the N-glycan heterogeneity desirable. Here, glycosylation in the testis isoform (tACE) has been reduced by Asn-Gln point mutations at N-glycosylation sites, and the crystal structures of mutants having two and four intact sites have been solved to 2.0 A and 2.8 A, respectively. Both mutants show close structural identity with the wild-type. A hinge mechanism is proposed for substrate entry into the active cleft, based on homology to human ACE2 at the levels of sequence and flexibility. This is supported by normal-mode analysis that reveals intrinsic flexibility about the active site of tACE. Subdomain II, containing bound chloride and zinc ions, is found to have greater stability than subdomain I in the structures of three ACE homologues. Crystallizable glycosylation mutants open up new possibilities for cocrystallization studies to aid the design of novel ACE inhibitors.  相似文献   

20.
Amino acids in the serine proteinase inhibitor eglin c important for its inhibitory specificity and activity have been investigated by site-directed mutagenesis. The specificity of eglin c could be changed from elastase to trypsin inhibition by the point mutation Leu45----Arg (L45R) in position P1 [nomenclature according to Schechter and Berger (1967) Biochem. Biophys. Res. Commun. 27, 157-162]. Model building studies based on the crystal structure of mutant L45R [Heinz et al. (1991) J. Mol. Biol. 217, 353-371] were used to rationalize this specificity change. Surprisingly, the double mutant L45R/D46S was found to be a substrate of trypsin and various other serine proteinases. Multidimensional NMR studies show that wild-type eglin c and the double mutant have virtually identical conformations. In the double mutant L45R/D46S, however, the N-H bond vector of the scissile peptide bond shows a much higher mobility, indicating that the internal rigidity of the binding loop is significantly weakened due to the loss or destabilization of the internal hydrogen bond of the P1' residue. Mutant T44P was constructed to examine the role of a proline in position P2, which is frequently found in serine proteinase inhibitors [Laskowski and Kato (1980) Annu. Rev. Biochem. 49, 593-626]. The mutant remains a potent elastase inhibitor but no longer inhibits subtilisin, which could be explained by model building. Both Arg51 and Arg53, located in the core of the molecule and participating in the hydrogen bonding network with residues in the binding loop to maintain rigidity around the scissile bond, were individually replaced with the shorter but equally charged amino acid lysine. Both mutants showed a decrease in their inhibitory potential. The crystal structure of mutant R53K revealed the loss of two hydrogen bonds between the core and the binding loop of the inhibitor, which are partially restored by a solvent molecule, leading to a decrease in inhibition of elastase by 2 orders of magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号