首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This review discusses multiple effects of sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) on endothelial cells and proposes that S1P and LPA are important regulators of the vascular system. Two physiologic sources of S1P and LPA are platelets and lipoproteins. S1P is an inducer of angiogenesis in vivo whereas LPA is not. S1P and LPA act through endothelial cell surface Edg receptors. S1P stimulates endothelial cell migration, but inhibits migration of most nonendothelial cells. Edg1 and Edg3 receptors, working through G(i), play an important role in regulation of S1P-stimulated endothelial cell migration. LPA effects on endothelial cells are more restricted than the effects of S1P on endothelial cells. LPA stimulates migration of certain endothelial cells on certain extracellular matrix proteins. However, LPA acts like S1P in its effects on the endothelial cell cytoskeleton, proliferation, cell-cell adhesion molecule expression, and vascular permeability. LPA receptors on endothelial cells are likely Edg2 and Edg4. Future studies should better delineate the roles of Edg receptors and downstream pathways on effects of extracellular S1P and LPA and the contributions of intracellularly generated S1P and nitric oxide (NO).  相似文献   

2.
The (lyso)phospholipid mediators sphingosine-1-phosphate (S1P), lysophosphatidic acid (LPA), sphingosylphosphorylcholine (SPC), and phosphatidic acid (PA) regulate diverse cellular responses such as proliferation, survival and death, cytoskeletal rearrangements, cell motility, and differentiation among many others. Signaling is complex and many signaling events are mediated through the activation of cell surface seven transmembrane (7TM) G protein coupled receptors. Five high affinity receptors for S1P have been identified so far and named S1P(1, 2,3,4,5) (formerly referred to as endothelial differentiation gene (edg)1, 5, 3, 6, 8). Recently, the orphan receptor GPR63 was identified a low affinity S1P receptor structurally distant from the S1P(1-5) family. The orphan GPR3, 6, 12 cluster, phylogenetically related to the edg and melanocortin receptors appears to be subject to modulation by S1P and SPC although all three receptors are strong constitutive stimulators of the Galphas-adenylyl cyclase (AC) pathway and would not require additional ligand stimulation but rather inverse agonism to control activity. Ovarian cancer G protein coupled receptor 1 (OGR1) and GPR4, two structurally closely related receptors were assigned in functional and binding studies as high affinity molecular targets for SPC. Very recently, however, both OGR1 and GPR4 were described as receptors endowed with the ability to signal cells in response to protons. LPA exerts its biological effects through the activation of G protein coupled LPA(1-3) receptors (formerly referred to as edg2, 4, 7). A fourth high affinity LPA receptor has been identified: P2Y9 (GPR23) structurally related to nucleotide receptors and phylogenetically quite distant from the high affinity LPA(1-3) cluster. This review attempts to give an overview about the existing families of lysophosholipid receptors and the spectrum of lipid agonists they use as high or low affinity ligands to relay extracellular signals into intracellular responses. Recently deorphaned lipid receptors, within and outside the known lipid receptor clusters will receive particular attention.  相似文献   

3.
Lysophospholipid mediators of immunity and neoplasia   总被引:7,自引:0,他引:7  
Lysophosphatidic acid (LPA), sphingosine 1-phosphate (S1P) and some other structurally related lysophospholipids are active growth factors and stimuli for diverse cellular functions. LPA and S1P promote early T cell migration to tissue sites of immune responses and regulate T cell proliferation and secretion of numerous cytokines. Edg-4 (LPA2) LPA receptors, which are constitutively expressed by helper T cells, and Edg-2 (LPA1) LPA receptors, which are expressed only by activated helper T cells, transduce opposite effects of LPA on some T cell responses. A similar mechanism is observed for fine regulation of Edg R-mediated effects of LPA on ovarian cancer cells. Edg-4 (LPA2) R transduces proliferative responses, recruitment of autocrine protein growth factors, and migration of ovarian cancer cells, whereas Edg-2 (LPA1) R transduces inhibition of Edg-4 (LPA2) R-mediated responses and concurrently elicits apoptosis and anoikis of ovarian cancer cells. Edg-4 (LPA2) R is a distinctive functional marker for ovarian carcinoma, and is expressed both as the wild-type and a carboxyl-terminally extended gain-of-function mutant. Newly discovered non-lipid agonists and antagonists for individual Edg receptors will permit more sophisticated analyses of their respective contributions in human biology and pathophysiology, and may represent novel therapeutic modalities in immune disorders and cancer.  相似文献   

4.
Lipid phosphates initiate key signaling cascades in cell activation. Lysophosphatidate (LPA) and sphingosine 1-phosphate (S1P) are produced by activated platelets. LPA is also formed from circulating lysophosphatidylcholine by autotaxin, a protein involved tumor progression and metastasis. Extracellular LPA and S1P stimulate families of G-protein coupled receptors that elicit diverse responses. LPA is involved in wound repair and tumor growth. Exogenous S1P is a potent stimulator of angiogenesis, a process vital in development, tissue repair and the growth of aggressive tumors. Inside the cell, phosphatidate (PA), ceramide 1-phosphate (C1P), LPA, and S1P act as signaling molecules with distinct functions including the stimulation of cell division, cytoskeletal rearrangement, Ca(2+) transients, and membrane movement. These observations imply that phosphatases that degrade lipid phosphates on the cell surface, or inside the cell, regulate cell signaling under physiological and pathological conditions. This occurs through attenuation of signaling by the lipid phosphates and by the production of bioactive products (diacylglycerol, ceramide, and sphingosine). Three lipid phosphate phosphatases (LPPs) and a splice variant dephosphorylate LPA, PA, CIP, and S1P. Two S1P phosphatases (SPPs) act specifically on S1P. In addition, there is family of four LPP-related proteins (LPRs, or plasticity-related genes, PRGs). PRG-1 expression in neurons has been reported to increase extracellular LPA breakdown and attenuate LPA-induced axonal retraction. It is unclear whether the LRPs dephosphorylate LPA directly, stimulate LPP activity, or bind LPA and S1P. Also, the importance of extra- versus intra-cellular actions of the LPPs and SPPs, and the individual roles of different isoforms is not firmly established. Understanding the functions and regulation of the LPPs, SPPs and related proteins will hopefully contribute to interventions to correct dysfunctions in conditions such as wound repair, inflammation, angiogenesis, tumor growth, and metastasis.  相似文献   

5.
Lysophosphatidic acid (LPA) and sphingosine 1-phosphate(S1P) are potent lipid growth factors with similar abilities tostimulate cytoskeleton-based cellular functions. Their effects aremediated by a subfamily of G protein-coupled receptors (GPCRs) encoded by endothelial differentiation genes (edgs). Wehypothesize that large quantities of LPA and S1P generated by activatedplatelets may influence endothelial cell functions. Using an in vitrowound healing assay, we observed that LPA and S1P stimulated closure ofwounded monolayers of human umbilical vein endothelial cells and adultbovine aortic endothelial cells, which express LPA receptor Edg2, andS1P receptors Edg1 and Edg3. The two major components of wound healing,cell migration and proliferation, were stimulated individually by bothlipids. LPA and S1P also stimulated intracellular Ca2+mobilization and mitogen-activated protein kinase (MAPK)phosphorylation. Pertussis toxin partially blocked the effects of bothlipids on endothelial cell migration, MAPK phosphorylation, andCa2+ mobilization, implicatingGi/o-coupled Edg receptor signaling inendothelial cells. LPA and S1P did not cross-desensitize each other inCa2+ responses, suggesting involvement of distinctreceptors. Thus LPA and S1P affect endothelial cell functions throughsignaling pathways activated by distinct GPCRs and may contribute tothe healing of wounded vasculatures.

  相似文献   

6.
Sphingosine-1-phosphate (S1P) is a bioactive lysosphingolipid implicated in mitogenesis and cytoskeletal remodelling, but its mechanism of action is poorly understood. We report here that in N1E-115 neuronal cells, S1P mimics the G protein-coupled receptor agonist lysophosphatidic acid (LPA) in rapidly inducing neurite retraction and soma rounding, a process driven by Rho-dependent contraction of the actin cytoskeleton. S1P is approximately 100-fold more potent than LPA in evoking these shape changes, with an EC50 as low as 1.5 nM. Microinjection of S1P has no effect, neither has addition of sphingosine or ceramide. As with LPA, S1P action is inhibited by suramin and subject to homologous desensitization; however, the responses to S1P and LPA do not show cross-desensitization. We conclude that S1P activates its own high affinity receptor to trigger Rho-regutated cytoskeletal events. Thus, S1P and LPA may belong to an emerging family of bioactive lysophospholipids that act through distinct G protein-coupled receptors to mediate similar actions.  相似文献   

7.
Sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) are blood-borne lysophospholipids with a wide spectrum of biological activities, which include stimulation of cell growth, prevention of apoptosis, regulation of actin cytoskeleton, and modulation of cell shape, cell migration, and invasion. Activated platelets appear to be a major source of both S1P and LPA in blood. Despite the diversity of their biosynthetic origins, they are considered to share substantial structural similarity. Indeed, recent investigation has revealed that S1P and LPA act via a single family of G protein-coupled receptors designated as Edg. Thus, the Edg isoforms, Edg1 (also called S1P(1)), Edg5 (S1P(2)), Edg3 (S1P(3)), Edg6 (S1P(4)), and Edg8 (S1P(5)), are specific receptors for S1P (and SPC with a lower affinity), whereas Edg2 (LPA(1)), Edg4 (LPA(2)), and Edg7 (LPA(3)) serve as receptors specific for LPA. Each receptor isoform displays a unique tissue expression pattern and coupling to a distinct set of heterotrimeric G proteins, leading to the activation of an isoform-specific panel of multiple intracellular signaling pathways. Recent studies on knockout mice have unveiled non-redundant Edg receptor functions that are essential for normal development and vascular maturation. In addition, the Edg lysophospholipid signaling system may play a role in modulating cell motility under such pathological conditions as inflammation, tumor cell dissemination and vascular remodeling.  相似文献   

8.
The biological roles of phospholipid growth factors lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) have been broadly investigated. The cellular effects of LPA and S1P are mediated predominantly via endothelial differentiation gene (EDG) receptors. Yet, the biological significance of LPA, S1P and their EDG receptors in cells of the liver remains unclear. Recent data demonstrate the presence of EDG2 and EDG4 mRNA for LPA receptor in a murine hepatocyte cell line transformed with human TGF-alpha, and in primary mouse hepatocytes. EDG2 receptor protein is expressed in mouse liver, where it appears to be located in nonparenchymal cells. Moreover, we have obtained data suggesting that proliferation of small hepatocyte-progenitors and stem (oval) cells during liver injury is associated with the expression of EDG2 and EDG4 receptors. LPA, and possibly S1P, appear to be essential factors that control proliferation and motility of hepatic stellate cells (HSC) and hepatoma cells. It is proposed that LPA, S1P and their respective EDG receptors play important roles in pathophysiology of chronic liver injury and fibrogenesis. The underlying mechanisms recruited by LPA and S1P in pathogenesis of liver injury remain to be investigated.  相似文献   

9.
Some of the biological effects of lipoproteins have been attributed to their association with lysophosphatidic acid (LPA), lysophosphatidylcholine (LPC), sphingosine-1-phosphate (S1P) and sphingosylphosphorylcholine (SPC). These lysophospholipids mediate multiple biological responses via several G protein-coupled receptors (GPR). The expression of these receptors, however, has not been systematically investigated in primary human monocytes and macrophages as major cells involved in atherosclerosis. The mRNAs for all 15 receptors described so far were detected in monocytes, macrophages, foam cells and high density lipoprotein (HDL(3))-treated cells using real time RT-PCR. Immunoblots revealed that S1P(1), S1P(2), S1P(4), LPA(1), LPA(2) and GPR65 are expressed in monocytes and macrophages, while S1P(5) and LPA(3) have not been detected. S1P(3) was induced during differentiation but down-regulated by lipid-loading and HDL(3), whereas LPA(1) was down-regulated in differentiated macrophages. The influence of S1P on macrophages was investigated and the induction of CD32 indicates an enhanced phagocytic activity. Altogether, these data give insights into the expression and regulation of lysophospholipid receptors in primary human monocytes, macrophages and foam cells.  相似文献   

10.
The lysophospholipids, lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P), regulate various signaling pathways within cells by binding to multiple G protein-coupled receptors. Receptor-mediated LPA and S1P signaling induces diverse cellular responses including proliferation, adhesion, migration, morphogenesis, differentiation and survival. This review will focus on major components of lysophospholipid signaling: metabolism, identification and expression of LPA and S1P receptors, general signaling pathways and specific signaling mechanisms in mouse embryonic fibroblasts. Finally, in vivo effects of LP receptor gene deletion in mice will be discussed.  相似文献   

11.
Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P), two of the best-studied lysophospholipids, are known to influence diverse biological events, including organismal development as well as function and pathogenesis within multiple organ systems. These functional roles are due to a family of at least 11 G protein-coupled receptors (GPCRs), named LPA1–6 and S1P1–5, which are widely distributed throughout the body and that activate multiple effector pathways initiated by a range of heterotrimeric G proteins including Gi/o, G12/13, Gq and Gs, with actual activation dependent on receptor subtypes. In the central nervous system (CNS), a major locus for these signaling pathways, LPA and S1P have been shown to influence myriad responses in neurons and glial cell types through their cognate receptors. These receptor-mediated activities can contribute to disease pathogenesis and have therapeutic relevance to human CNS disorders as demonstrated for multiple sclerosis (MS) and possibly others that include congenital hydrocephalus, ischemic stroke, neurotrauma, neuropsychiatric disorders, developmental disorders, seizures, hearing loss, and Sandhoff disease, based upon the experimental literature. In particular, FTY720 (fingolimod, Gilenya, Novartis Pharma, AG) that becomes an analog of S1P upon phosphorylation, was approved by the FDA in 2010 as a first oral treatment for MS, validating this class of receptors as medicinal targets. This review will provide an overview and update on the biological functions of LPA and S1P signaling in the CNS, with a focus on results from studies using genetic null mutants for LPA and S1P receptors. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   

12.
Lipid phosphate esters including lysophosphatidate (LPA), phosphatidate (PA), sphingosine 1-phosphate (S1P) and ceramide 1-phosphate (C1P) are bioactive in mammalian cells and serve as mediators of signal transduction. LPA and S1P are present in biological fluids and activate cells through stimulation of their respective G-protein-coupled receptors, LPA(1-3) and S1P(1-5). LPA stimulates fibroblast division and is important in wound repair. It is also active in maintaining the growth of ovarian cancers. S1P stimulates chemotaxis, proliferation and differentiation of vascular endothelial and smooth muscle cells and is an important participant in the angiogenic response and neovessel maturation. PA and C1P are believed to act primarily inside the cell where they facilitate vesicle transport. The lipid phosphates are substrates for a family of lipid phosphate phosphatases (LPPs) that dramatically alter the signaling balance between the phosphate esters and their dephosphorylated products. In the case of PA, S1P and C1P, the products are diacylglycerol (DAG), sphingosine and ceramide, respectively. These latter lipids are also bioactive and, thus, the LPPs change signals that the cell receives. The LPPs are integral membrane proteins that act both inside and outside the cell. The "ecto-activity" of the LPPs regulates the circulating and locally effective concentrations of LPA and S1P. Conversely, the internal activity controls the relative accumulation of PA or C1P in response to stimulation by various agonists thereby affecting cell signaling downstream of EDG and other receptors. This article will review the various LPPs and discuss how these enzymes could regulate signal transduction by lipid mediators.  相似文献   

13.
The phospholipid growth factors sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) are ligands for the related G protein-coupled receptors S1P(1)/EDG1 and LPA(1)/EDG2, respectively. We have developed a model of LPA(1) that predicts interactions between three polar residues and LPA. One of these, glutamine 125, which is conserved in the LPA receptor subfamily (LPA(1)/EDG2, LPA(2)/EDG4, and LPA(3)/EDG7), hydrogen bonds with the LPA hydroxyl group. Our previous S1P(1) study identified that the corresponding glutamate residue, conserved in all S1P receptors, ion pairs with the S1P ammonium. These two results predict that this residue might influence ligand recognition and specificity. Characterization of glutamate/glutamine interchange point mutants of S1P(1) and LPA(1) validated this prediction as the presence of glutamate was required for S1P recognition, whereas LPA recognition was possible with either glutamine or glutamate. The most likely explanation for this dual specificity behavior is a shift in the equilibrium between the acid and conjugate base forms of glutamic acid due to other amino acids surrounding that position in LPA(1), producing a mixture of receptors including those having an anionic glutamate that recognize S1P and others with a neutral glutamic acid that recognize LPA. Thus, computational modeling of these receptors provided valid information necessary for understanding the molecular pharmacology of these receptors.  相似文献   

14.
Lysophosphatidic acid (LPA) is a bioactive lysophospholipid mediator that acts through G protein-coupled receptors. Most cell lines in culture express one or more LPA receptors, making it difficult to assign a response to specific LPA receptors. Dissection of the signaling properties of LPA has been hampered by lack of LPA receptor subtype-specific agonists and antagonists. The present study characterizes an ester-linked thiophosphate derivative (1-oleoyl-2-O-methyl-rac-glycerophosphothionate, OMPT) of LPA. OMPT is a functional LPA analogue with potent mitogenic activity in fibroblasts. In contrast to LPA, OMPT does not couple to the pheromone response through the LPA(1) receptor in yeast cells. OMPT induces intracellular calcium increases efficiently in LPA(3) receptor-expressing Sf9 cells but poorly in LPA(2) receptor-expressing cells. Guanosine 5'-O-(3-[(35)S]thio)triphosphate binding assays in mammalian cells showed that LPA exhibits agonistic activity on all three LPA receptor subtypes, whereas OMPT has a potent agonistic effect only on the LPA(3) receptor. In transiently transfected HEK293 cells, OMPT stimulates mitogen-activated protein kinases through the LPA(3) but not the LPA(1) or LPA(2) receptors. Furthermore, OMPT-induced intracellular calcium mobilization in mammalian cells is efficiently inhibited by the LPA(1)/LPA(3) receptor-selective antagonist VPC12249. These results establish that OMPT is an LPA(3)-selective agonist. OMPT binding to the LPA(3) receptor in mammalian cells is sufficient to elicit multiple responses, including activation of G proteins, calcium mobilization, and activation of mitogen-activated protein kinases. Thus OMPT offers a powerful probe for the dissection of LPA signaling events in complex mammalian systems.  相似文献   

15.
Stem cell regulation by lysophospholipids   总被引:1,自引:0,他引:1  
Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) regulate a diverse range of mammalian cell processes, largely through engaging multiple G protein-coupled receptors specific for these lysophospholipids. LPA and S1P have been clearly identified to have widespread physiological and pathophysiological actions, controlling events within the reproductive, gastrointestinal, vascular, nervous and immune systems, and also having a prominent role in cancer. Here we review the recent literature showing the additional emerging role for LPA and S1P in the regulation of stem cells and their progenitors. We discuss the role of these lysophospholipids in regulating the proliferation, survival, differentiation and migration of a range of adult and embryonic stem cells and progenitors, and thus are likely to play a substantial role in the maintenance, generation, mobilisation and homing of stem cell and progenitor populations in the body.  相似文献   

16.
Agonist activation of a subset of G protein coupled receptors (GPCRs) stimulates cell proliferation, mimicking the better known effects of tyrosine kinase growth factors. Cell survival or apoptosis is also regulated via pathways initiated by stimulation of these same GPCRs. This review focuses on aspects of signaling by the lysophospholipid mediators, lysophosphatidic acid (LPA), and sphingosine 1 phosphate (S1P), which make these agonists uniquely capable of modulating cell growth and survival. The general features of GPCR coupling to specific G proteins, downstream effectors and signaling cascades are first reviewed. GPCR coupling to G(i) and Ras/MAPK or to G(q) and phospholipase generated second messengers are insufficient to regulate cell proliferation while G(12/13)/Rho engagement provides additional complementary signals required for cell proliferation. Survival is best predicted by coupling to G(i) pathways that regulate PI3K and Akt, but other signals generated through different G protein pathways are also implicated. The unique ability of LPA and S1P to concomitantly stimulate G(i), G(q), and G(12/13) pathways, given the proper complement of expressed LPA or S1P receptors, allows these receptors to support cell survival and proliferation. In pathophysiological situations, e.g., vascular disease, cancer, brain injury, and inflammation, components of the signaling cascade downstream of lysophospholipid receptors, in particular those involving Ras or Rho, may be altered. In addition, up or downregulation of LPA or S1P receptor subtypes, altering their ratio, and increased availability of the lysophospholipid ligands at sites of injury or inflammation, likely contribute to disease and may be important targets for therapeutic intervention.  相似文献   

17.
We demonstrate the expression of S1P(1,3,4,5) the receptors for sphingosine 1-phosphate (S1P), and LPA(1,2,3) the receptors for lysophosphatidic acid (LPA) in T helper 1 (Th1) and T helper 2 (Th2) cells. S1P and LPA induce the chemotaxis of Th1 and Th2 cells, an activity that is resistant to pertussis toxin (PTX) pretreatment in Th1, but is sensitive in Th2 cells. Also, I-TAC-induced Th1 and eotaxin-induced Th2 cell chemotaxis are blocked by PTX pretreatment. LPA but not S1P induces calcium flux response in Th1 and Th2 cells, which is due to the influx of extracellular calcium and is mediated by receptor activation, since EGTA and suramin (SUR) completely abrogate LPA-induced the release of calcium. No cross-desensitization is observed between thapsigargin (TG) and LPA in both cell types. PTX and SUR but not EGTA inhibit I-TAC- or eotaxin-induced [Ca(2+)](i) release in Th1 and Th2 cells. Our results indicate that lysophospholipids and chemokines stimulate different signal transduction pathways.  相似文献   

18.
Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) are extracellular ligands for a family of G protein-coupled receptors (GPCRs), LPA1/2/3 and S1P1/2/3/4/5. Through coupling to multiple classes of G proteins and activating multiple signaling pathways, LPA/S1P receptors have been shown to be integral players for many essential cellular and physiological processes. Generation and analysis of mice deficient in each of LPA1, LPA2, S1P1, S1P2, and S1P3 have provided valuable information on the in vivo roles of these receptors. This review is focussed on expression patterns of each receptor gene in wild-type mice, targeted deletion approaches for generating mutant animals, main phenotypes of receptor-null mice, and alterations in signaling characteristics in receptor-deficient primary cells. Altogether, these data give insights to the importance of LPA/S1P receptors at the cellular and organismal level.  相似文献   

19.
The migration of vascular smooth muscle cells (SMCs) is a hallmark of the pathogenesis of atherosclerosis and restenosis after angioplasty. Plasma low-density lipoprotein (LDL), but not high-density lipoprotein (HDL), induced the migration of human coronary artery SMCs (CASMCs). Among bioactive lipids postulated to be present in LDL, lysophosphatidic acid (LPA) appreciably mimicked the LDL action. In fact, the LDL-induced migration was markedly inhibited by pertussis toxin, an LPA receptor antagonist Ki-16425, and a small interfering RNA (siRNA) targeted for LPA(1) receptors. Moreover, LDL contains a higher amount of LPA than HDL does. HDL markedly inhibited LPA- and platelet-derived growth factor (PDGF)-induced migration, and sphingosine 1-phosphate (S1P), the content of which is about fourfold higher in HDL than in LDL, mimicked the HDL action. The inhibitory actions of HDL and S1P were suppressed by S1P(2) receptor-specific siRNA. On the other hand, the degradation of the LPA component of LDL by monoglyceride lipase or the antagonism of LPA receptors by Ki-16425 allowed LDL to inhibit the PDGF-induced migration. The inhibitory effect of LDL was again suppressed by S1P(2) receptor-specific siRNA. In conclusion, LPA/LPA(1) receptors and S1P/S1P(2) receptors mediate the stimulatory and inhibitory migration response to LDL and HDL, respectively. The balance of not only the content of LPA and S1P in lipoproteins but also the signaling activity between LPA(1) and S1P(2) receptors in the cells may be critical in determining whether the lipoprotein is a positive or negative regulator of CASMC migration.  相似文献   

20.
G protein coupled receptors (GPCRs) form homo- and hetero-dimers or -oligomers, which are functionally important. Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are bioactive lysophopholipids involved in diverse biological processes. We have examined homo- and hetero-dimerization among three major LPA receptors (LPA(1-3)), three major S1P receptors (S1P(1-3)), as well as OGR1 and GPR4. Using LacZ complementation assays, we have shown that LPA receptors form homo- and hetero-dimers within the LPA receptor subgroup and hetero-dimers with other receptors (S1P(1-3) and GPR4). In addition, we have found that although GPR4 and OGR1 share more than 50% homology, GPR4 forms strong homo- and hetero-dimers with LPA and S1P receptors, but OGR1 forms very weak homo-dimer and relatively weak hetero-dimers with other receptors. Using chimeric receptors between GPR4 and OGR1, we have shown that different domains of GPR4 receptor are involved in its dimerization with different GPCRs and more than one domain may be involved in some of the complex formation. Our results suggest that when studying a signal transduction induced by a stimulus, not only is the expression and activation of its own receptor(s), but also the status of the interacting receptors should be taken into consideration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号