首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phorbol esters such as phorbol myristate acetate (PMA) were employed to examine the involvement of protein kinase C in the regulation of protein synthesis in intact GH3 pituitary tumor cells. Amino acid incorporation increased as a function of time of pretreatment with these agents; 4-8- and 2-3-fold stimulations were observed for Ca2+-depleted and -restored preparations, respectively, following 2 h of exposure. PMA enhanced incorporation of amino acid into all detectable polypeptide species. Lysates of PMA-treated cells incorporated amino acid more efficiently than did lysates of untreated controls. Cells slowed at initiation by Ca2+ depletion responded to treatment with PMA with the production of low molecular weight polysomes and a concomitant decrease in 80 S monomers. In Ca2+-restored preparations, which form large polysomes, PMA treatment resulted in a decrease in 80 S monomers and a shift in average polysomal size from smaller to larger molecular weight. Ribosomal transit times, however, were not altered. PMA-stimulated amino acid incorporation and polysome formation were either eliminated or reduced significantly by actinomycin D and could not be ascribed to increased amino acid uptake or methionylation of tRNA. Substances which elevate cAMP in GH3 cells mimicked phorbol ester in its actions on protein synthesis. It is proposed that GH3 cells, in response to various stimuli, rapidly synthesize an mRNA that subsequently increases the synthesis of a rate-limiting component of translational initiation. Evidence that this pathway for translational control may function in alternative cell types is also presented.  相似文献   

2.
TRH stimulation of prolactin release from GH3 cells is dependent on Ca2+; however, whether TRH-induced influx of extracellular Ca2+ is required for stimulated secretion remains controversial. We studied prolactin release from cells incubated in medium containing 110 mM K+ and 2 mM EGTA which abolished the electrical and Ca2+ concentration gradients that usually promote Ca2+ influx. TRH caused prolactin release and 45Ca2+ efflux from cells incubated under these conditions. In static incubations, TRH stimulated prolactin secretion from 11.4 +/- 1.2 to 19 +/- 1.8 ng/ml in control incubations and from 3.2 +/- 0.6 to 6.2 +/- 0.8 ng/ml from cells incubated in medium with 120 mM K+ and 2 mM EGTA. We conclude that Ca2+ influx is not required for TRH stimulation of prolactin release from GH3 cells.  相似文献   

3.
Ca2+ is required for the maintenance of high rates of translational initiation in GH3 pituitary cells (Chin, K.-V., Cade, C., Brostrom, C.O., Galuska, E.M., and Brostrom, M.A. (1987) J. Biol. Chem. 262, 16509-16514). Following thermal stress at 46 degrees C or chemical stress from exposure to sodium arsenite or 8-hydroxyquinoline, rates of amino acid incorporation in Ca2+-restored GH3 cells were reduced acutely to those of unstressed, Ca2+-depleted control preparations. Sodium arsenite treatment resulted in loss of ability to accumulate polysomes in response to Ca2+. Stressed cells allowed to recover for 2-8 h either with or without Ca2+ in the medium exhibited comparable, increasing rates of amino acid incorporation and the induction of heat shock proteins (hsp). Abolition of the Ca2+-dependent component of translation was proportional to the intensity of the stress. Mild thermal stress (41 degrees C) resulted in the induction of hsp 68 and the retention of Ca2+-dependent protein synthesis; hsp 68 was synthesized in a Ca2+-dependent manner. After arsenite stress, restoration of the Ca2+ requirement for protein synthesis occurred by 24 h, and was preceded by a transitional period during which polysomes accumulated in response to Ca2+ without concomitant increased rates of incorporation. Responses to stress are proposed to include an acute inhibition of normal protein synthesis involving the destruction of Ca2+-stimulated initiation and a protracted period of recovery involving synthesis of the hsp accompanied by Ca2+-independent amino acid incorporation and slowed peptide chain elongation.  相似文献   

4.
Thyrotropin-releasing hormone (TRH) stimulates biphasic prolactin (PRL) secretion from rat pituitary GH3 cells. The pretreatment of cells with EGTA (100 microM) plus arachidonic acid (15 microM), a condition which decreased TRH-responsive intracellular Ca2+ pools, eliminated the activity of TRH on burst PRL secretion (2 min) but did not alter that on sustained PRL secretion (30 min). However, the treatment of cells with EGTA, arachidonic acid and H-7 (300 microM), a potent inhibitor of protein kinase C (PKC), almost completely suppressed the activity of TRH for sustained PRL secretion. In cells down-modulated for PKC, TRH abolished this Ca2(+)-independent sustained PRL secretion. These results suggest that TRH acts through a separate, Ca2(+)-independent secretory mechanism, besides by modulating the Ca2(+)-dependent mechanism and that PKC is involved in this Ca2(+)-independent secretory pathway.  相似文献   

5.
K Cheng  W W Chan  R Arias  A Barreto  B Butler 《Life sciences》1992,51(25):1957-1967
In GH3 cells and other clonal rat pituitary tumor cells, TRH has been shown to mediate its effects on prolactin release via a rise of cytosolic Ca2+ and activation of protein kinase C. In this study, we examined the role of protein kinase C in TRH-stimulated prolactin release from female rat primary pituitary cell culture. Both TRH and PMA stimulated prolactin release in a dose-dependent manner. When present together at maximal concentrations, TRH and PMA produced an effect which was slightly less than additive. Pretreatment of rat pituitary cells with 10(-6) M PMA for 24 hrs completely down-regulated protein kinase C, since such PMA-pretreated cells did not release prolactin in response to a second dose of PMA. Interestingly, protein kinase C down-regulation had no effect on TRH-induced prolactin release from rat pituitary cells. In contrast, PMA-pretreated GH3 cells did not respond to a subsequent stimulation by either PMA or TRH. Pretreatment of rat pituitary cells with TRH (10(-7) M, 24 hrs) inhibited the subsequent response to TRH, but not PMA. Forskolin, an adenylate cyclase activator, stimulated prolactin release by itself and in a synergistic manner when incubated together with TRH or PMA. The synergistic effects of forskolin on prolactin release was greater in the presence of PMA than TRH. Down-regulation of protein kinase C by PMA pretreatment abolished the synergistic effect produced by PMA and forskolin but had no effect on those generated by TRH and forskolin. sn-1,2-Dioctanylglycerol (DOG) pretreatment attenuated the subsequent response to DOG and PMA but not TRH. The effect of TRH, but not PMA, on prolactin release required the presence of extracellular Ca2+. In conclusion, the mechanism by which TRH causes prolactin release from rat primary pituitary cells is different from that of GH3 cells; the former is a protein kinase C-independent process whereas the latter is at least partially dependent upon the activation of protein kinase C.  相似文献   

6.
7.
We examined whether mitogen-activated protein (MAP) kinase is activated by thyrotropin-releasing hormone (TRH) in GH3 cells, and whether MAP kinase activation is involved in secretion of prolactin from these cells. Protein kinase inhibitors--such as PD098059, calphostin C, and genistein--and removal of extracellular Ca2+ inhibited MAP kinase activation by TRH. A cAMP analogue activated MAP kinase in these cells. Effects of cAMP on MAP kinase activation were inhibited by PD098059. TRH-induced prolactin secretion was not inhibited by levels of PD098059 sufficient to i activation but was inhibited by wortmannin (1 microM) and KN93. Treatment of GH3 cells with either TRH or cAMP significantly inhibited DNA synthesis and induced morphological changes. The effects stimulated by TRH were reversed by PD098059 treatment, but the same effects stimulated by cAMP were not. Treatment of GH3 cells with TRH for 48 h significantly increased the prolactin content in GH3 cells and decreased growth hormone content. The increase in prolactin was completely abolished by PD098059, but the decrease in growth hormone was not. These results suggest that TRH-induced MAP kinase activation is involved in prolactin synthesis and differentiation of GH3 cells, but not in prolactin secretion.  相似文献   

8.
Ca2+ has been recently reported to be required for high rates of translational initiation in GH3 pituitary cells (Chin, K.-V., Cade, C., Brostrom, C.O., Galuska, E.M., and Brostrom, M.A. (1987) J. Biol. Chem. 262, 16509-16514). In the present investigation low concentrations of the Ca2+ ionophores, A23187 and ionomycin, were found to rapidly suppress the Ca2+-dependent component of protein synthesis in GH3 cells. More ionophore was required to inhibit amino acid incorporation into protein as extracellular Ca2+ was increased. Pre-existing inhibitions of protein synthesis produced by low concentrations of ionophore at low extracellular Ca2+ concentrations were reversed by adjustment to high extracellular Ca2+. Treatment with ionophore reduced the cellular contents of polysomes and 43 S preinitiation complex to values equivalent to those found for Ca2+-depleted cells. Average ribosomal transit times were unaffected by ionophore, and treated cells retained the ability to accumulate polysomes when incubated with cycloheximide. Cell types, such as HeLa and Chinese hamster ovary, that normally display only a modest Ca2+-dependent component of protein synthesis, manifested a strong underlying Ca2+ dependence in amino acid incorporation and polysome formation following treatment with low concentrations of ionophore. Protein synthesis in GH3 or HeLa cells during recovery from heat shock and arsenite treatment was not affected by cellular Ca2+ depletion or ionophore treatment. On the basis of these results, Ca2+ ionophore is proposed to inhibit Ca2+-dependent translational initiation through facilitating the mobilization of sequestered intracellular Ca2+.  相似文献   

9.
10.
To determine whether hormone synthesis by the GH4C1 pituitary cell line could be regulated by specifically modulating the movement of Ca2+ through voltage-sensitive channels, we have compared the effects of the dihydropyridine Ca2+ channel agonist BAY K8644 and the antagonist nimodipine on hormone production and Ca2+ current in these cells. BAY K8644 elicited, after a 10-15-h lag, a dose-dependent increase in prolactin (PRL) production as determined by measurements of total intracellular and secreted hormone. Over a 72-h period, GH4C1 cells incubated with 300 nM BAY K8644 produced 2-3 times as much total PRL as control cells. The effect on PRL was specific, since BAY K8644 did not increase growth hormone production, cell growth rate, or total cell protein. Exposing GH4C1 cells to BAY K8644 for short periods, up to 90 min, did not induce the delayed increase in PRL production observed with longer incubations. The effects of nimodipine were opposite to those of the Ca2+ channel agonist. PRL production was reduced 85% during 48-h treatment with 200 nM nimodipine, whereas growth hormone production was decreased less than 15%, and cell growth and total protein were unaffected. The actions of these two drugs on PRL production were well correlated with their effects on GH4C1 Ca2+ currents as measured by whole-cell patch-clamp recordings. BAY K8644 enhanced the magnitude of the peak Ca2+ current and shifted the current-voltage relationship such that Ca2+ channels were activated at less depolarized potentials. Nimodipine potently inhibited Ca2+ movement through the non-inactivating channel, while it antagonized the increases elicited by BAY K8644. These results indicate that PRL synthesis by GH4C1 cells can be specifically regulated by agents that enhance or block the movement of Ca2+ through voltage-sensitive channels. They also suggest that hormone synthesis by a secretory cell may be coupled to electrical activity by the opening of Ca2+ channels.  相似文献   

11.
The Ca2+ content of glial tumor (C6) cells was reduced approximately 5-fold by repeated treatment with media containing ethylene glycol bis(beta-aminoethyl ether) N,N'-tetraacetic acid (EGTA) without loss of cellular viability. The ability of the cells to accumulate cAMP in response to beta-adrenergic agonists was reduced 60 to 70% following Ca2+ depletion. Ca2+ did not affect the apparent KACT for norepinephrine, nor did it change the concentration of propranolol required to produce 50% inhibition of the maximal norepinephrine response. Phentolamine did not alter the Ca2+ dependence of the response. The binding of dihydroalprenolol by intact C6 cells was not influenced by Ca2+. Furthermore, pretreatment with norepinephrine did not affect the Ca2+ dependence of cAMP accumulation. The effects of Ca2+, therefore, appeared to be exerted on components of the adenylate cyclase system other than the catecholamine receptor. Micromolar free Ca2+ concentration in the extracellular medium were sufficient to restore a maximal norepinephrine response to Ca2+-depeleted cells. The effect of Ca2+ on cAMP accumulation in response to hormone was immediate and was rapidly reversible upon the addition of EGTA in excess of the cation. Cells in media containing Ca2+ exhibited a characteristic biphasic time course of cAMP accumulation; with Ca2+-depleted cells cAMP was accumulated more slowly and the subsequent decline in cAMP content was also reduced. Verapamil, an inhibitor of plasmalemmal Ca2+ influx, decreased the Ca2+-dependent component of the cAMP accumulation when added prior to the cation. The effect of Ca2+ on cAMP accumulation was reduced more extensively by pretreatment of cells at 45 degrees C under Ca2+-depleted (80% loss) than under Ca2+-restored (30% loss) conditions. Trifluoperazine at micromolar concentrations decreased the Ca2+-dependent increment in accumulation of cAMP in Ca2+-restored cells. This inhibition was not overcome by increasing concentrations of norepinephrine or of extracellular Ca2+.  相似文献   

12.
Using the acetoxymethyl ester of "Quin 2," a fluorescent Ca2+-indicator, we have loaded prolactin (PRL)-producing rat pituitary cells with non-toxic concentrations of Quin 2 and quantitated changes in cytosolic free calcium concentration ( [Ca2+]i) during stimulation of PRL release by thyrotropin-releasing hormone (TRH) and 40 mM K+. TRH induced a biphasic response, with an immediate (less than 1 s) spike in [Ca2+]i from basal levels (350 +/- 80 nM) to a peak of 1-3 microM, which decayed rapidly (t 1/2 = 8 s) to a near basal nadir, then rising to a plateau in [Ca2+]i of 500-800 nM. The TRH-induced spike phase was attenuated but not abolished by prior addition of EGTA, while the plateau phase was eliminated by EGTA. Addition of 40 mM K+ caused an immediate spike in [Ca2+]i to 1-3 microM which equilibrated slowly (t 1/2 = 1 min) directly to a plateau of 600-800 nM. The K+-induced spike and plateau phases were both abolished by prior addition of EGTA. The biphasic nature of TRH action on [Ca2+]i parallels the biphasic actions of TRH on 45Ca2+ fluxes and the biphasic release of PRL by GH cells in suspension. These findings provide evidence that Ca2+-dependent agonist-mediated increases in [Ca2+]i and hormone release are linked, and may generally have two modes: an acute "spike" mode, dependent primarily on redistribution of intracellular Ca2+ stores; and a sustained "plateau" mode, dependent on influx of extracellular Ca2+.  相似文献   

13.
Role of calcium (Ca2+) in the effects of thyroliberin (TRH) and somatostatin (SRIF) on the release of growth hormone (GH), prolactin (PRL) and thyroid stimulating hormone (TSH) from the rat adenohypophyseal cells in primary monolayer cultures has been studied. Decrease of extracellular Ca2+ diminished the stimulatory effects of TRH on TSH and PRL release. Ca2+ is also an important factor in the mechanism of SRIF action. Data obtained in the experiments with high Ca2+ levels in the medium indicate that some antagonistic interrelationship exists between Ca2+ and SRIF. These results suggest that the participation of cAMP alone is not sufficient for stimulus-secretion coupling. Another messenger, namely Ca2+, is necessary for the effects of hypothalamic hormones. On the other hand, the contribution of Ca2+ to the secretory process in mammotrophs, somatotrophs and thyrotrophs is not equal. PRL and TSH secretion is more dependent on the presence of extracellular Ca2+ than the release of GH.  相似文献   

14.
We report that the rat pituitary cell line GH3 contains a Ca2(+)- and calmodulin-dependent protein kinase with properties characteristic of multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) from rat brain. The GH3 kinase exhibits the hallmark of authentic CaM kinase: conversion from Ca2(+)-dependent to Ca2(+)-independent activity following a brief initial phosphorylation in vitro. This phosphorylation occurs at a site which is similar or identical to that of the "autonomy" site of the rat brain enzyme and thus may be an autophosphorylation event. GH3 CaM kinase is phosphorylated and becomes Ca2(+)-independent in situ. Depolarization of intact cells with K+ opens calcium channels and leads to the phosphorylation of CaM kinase at the autonomy site, and the kinase becomes significantly and persistently Ca2(+)-independent. Treatment of cells with thyrotropin-releasing hormone (TRH), which activates the phosphatidylinositol signaling pathway, also generates a Ca2(+)-independent CaM kinase in situ. The primary effect of TRH on CaM kinase activity is transient and correlates with the spike of Ca2+ released from intracellular stores and the rapid phase of prolactin release from GH3 cells. This study demonstrates that CaM kinase is able to detect and respond to both calcium that enters the cell through voltage-sensitive Ca2+ channels and calcium released from internal stores via the phosphatidylinositol pathway. We find that TRH, a hormone that causes release of prolactin and was previously believed to activate primarily protein kinase C, also significantly activates CaM kinase in intact cells.  相似文献   

15.
Some peculiarities of labeled growth hormone (GH) and prolactin (PL) secretion in the 5-day monolayer culture of the rat adenohypophysis was studied. The hormones from the culture medium were obtained by electrophoresis on polyacrylamide gel. Natrium-dibutyril of cyclic adenosine-3',5'-monophosphate and theophylline, stimulated the GH and PL secretion. Thyrotropin-releasing hormone (TRH) increased the incorporation of 14C-1-leucine into the cell protein, stimulated PL secretion, but did not act on the GH release. Somatostatin completely abolished the GH secretion mediated by theophyllin, but not that of PL. Some peculiarities in the formation of labeled GH and PL pool in the cells and secretion of these hormones into the culture medium are discussed.  相似文献   

16.
We have used phorbol esters, such as 12-O-tetradecanoyl phorbol 13-acetate (TPA), to study the actions of protein kinase C (a TPA receptor) on cytosolic free Ca2+ concentrations [( Ca2+]i) and hormone secretion in rat pituitary cells (GH cells), and to elucidate the role of diacylglycerol (a protein kinase C activator) in thyrotropin-releasing hormone (TRH) action. TPA had a dual action on [Ca2+]i, inducing a stimulatory phase from 300 (basal) to 420 nM, which was interrupted in 30-60 s by an inhibitory phase which transiently lowered [Ca2+]i to 240 nM and rose in 3-10 min to yield the stimulatory phase. TPA-mediated changes in [Ca2+]i were induced by other phorbol esters and mezerein but not by phorbol or activators of kinases different from protein kinase C. Both phases of TPA action on [Ca2+]i were abolished by 5-min pretreatment with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) (1.33 mM) or Ca2+ channel antagonists (verapamil or nifedipine). TPA also enhanced the rate of sustained hormone secretion without inducing a burst of hormone release (unlike TRH). Also, stimulation of secretion by TPA was not inhibited by Ca2+ channel antagonists and was resistant (10%) to EGTA. Simultaneous addition of TPA with the ionophore ionomycin (100 nM) reconstituted a TRH-like spike, nadir and plateau of [Ca2+]i. Ionomycin generated the spike in [Ca2+]i by releasing TRH-sensitive Ca2+ stores, while TPA induced the nadir (inhibitory phase), and a nifedipine/verapamil-sensitive plateau of [Ca2+]i (stimulatory phase). Concurrent (but not separate) addition of ionomycin and TPA also reconstituted a TRH-like burst of hormone secretion. These and previous results indicate that activation of protein kinase C by TPA or diacylglycerol (which is elevated by TRH) and a simultaneous spike in [Ca2+]i are required for burst secretion. Diacylglycerol may also mediate the TRH-induced nadir and plateau of [Ca2+]i; the latter process contributes to Ca2+-dependent stimulation of steady secretion by TRH.  相似文献   

17.
18.
Tetraethylammonium (TEA), a K+ channel blocker, induced prolactin (PRL) secretion in GH4C1 cells in a dose-dependent manner when applied at a concentration from 1-20 mM. During continuous exposure to TEA, a significant increase in PRL secretion occurred by 20 min and the response was sustained until the end of a 60-min exposure. Blocking Ca2+ influx by employing a Ca(2+)-depleted medium or the Ca2+ channel blocker, nifedipine, prevented induction of PRL secretion by 20 mM TEA. Preincubation of the cells for 10 min with 20 mM TEA did not inhibit PRL secretion induced by thyrotropin-releasing hormone (TRH), phorbol 12-myristate 13-acetate (TPA) or by cell swelling produced by 30% medium hyposmolarity, but significantly depressed that induced by depolarizing 30 mM K+. BaCl2, another K+ channel blocker, had the same effect on PRL secretion as TEA. The data suggest that blocking K+ channels may cause membrane depolarization, thereby inducing Ca2+ influx which is a potent stimulus for PRL secretion in GH4C1 cells.  相似文献   

19.
Numerous studies have shown that prolactin (PRL) production by GH3 cells grown in serum supplemented media is regulated by several hormones including thyroliberin (TRH). The recent availability of hormonally defined, serum-free media for the growth of GH3 cells has made it possible to determine the effect of TRH in absence of other prolactin regulating hormones. Here we demonstrate that transfer of GH3/B6 cells from serum-supplemented medium to serum-free media results in several important changes: (1) altered growth response to TRH, (2) altered cell attachment and morphology, (3) greatly reduced prolactin production, and (4) greater stimulation of prolactin production by TRH. After 4 days in serum-free medium, TRH stimulates prolactin production by as much as 5-fold instead of approximately 2-fold in serum-supplemented medium. Furthermore, this increased responsiveness to TRH in serum-free medium is accompanied by a 10-fold decrease in the ED50 for TRH (concentration needed for half-maximal response) and paradoxically by a 2-fold reduction in the number of high-affinity TRH binding sites without significant change of their association constant.  相似文献   

20.
We examined the possible involvement of mitogen-activated protein (MAP) kinase activation in the secretory process and gene expression of prolactin and growth hormone. Thyrotropin-releasing hormone (TRH) rapidly stimulated the secretion of both prolactin and growth hormone from GH3 cells. Secretion induced by TRH was not inhibited by 50 microM PD098059, but was completely inhibited by 1 microM wortmannin and 10 microM KN93, suggesting that MAP kinase does not mediate the secretory process. Stimulation of GH3 cells with TRH significantly increased the mRNA level of prolactin, whereas expression of growth hormone mRNA was largely attenuated. The increase in prolactin mRNA stimulated by TRH was inhibited by addition of PD098059, and the decrease in growth hormone mRNA was also inhibited by PD098059. Transfection of the cells with a pFC-MEKK vector (a constitutively active MAP kinase kinase kinase), significantly increased the synthesis of prolactin and decreased the synthesis of growth hormone. These data taken together indicate that MAP kinase mediates TRH-induced regulation of prolactin and growth hormone gene expression. Reporter gene assays showed that prolactin promoter activity was increased by TRH and was completely inhibited by addition of PD098059, but that the promoter activity of growth hormone was unchanged by TRH. These results suggest that TRH stimulates both prolactin and growth hormone secretion, but that the gene expressions of prolactin and growth hormone are differentially regulated by TRH and are mediated by different mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号