首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Fung E  Bouet JY  Funnell BE 《The EMBO journal》2001,20(17):4901-4911
The ParA family of proteins is involved in partition of a variety of plasmid and bacterial chromosomes. P1 ParA plays two roles in partition: it acts as a repressor of the par operon and has an undefined yet indispensable role in P1 plasmid localization. We constructed seven mutations in three putative ATP-binding motifs of ParA. Three classes of phenotypes resulted, each represented by mutations in more than one motif. Three mutations created 'super-repressors', in which repressor activity was much stronger than in wild-type ParA, while the remainder damaged repressor activity. All mutations eliminated partition activities, but two showed a plasmid stability defect that was worse than that of a null mutation. Four mutant ParAs, two super-repressors and two weak repressors, were analyzed biochemically, and all exhibited damaged ATPase activity. The super-repressors bound site-specifically to the par operator sequence, and this activity was strongly stimulated by ATP and ADP. These results support the proposal that ATP binding is essential but hydrolysis is inhibitory for ParA's repressor activity and suggest that ATP hydrolysis is essential for plasmid localization.  相似文献   

2.
L Radnedge  B Youngren  M Davis    S Austin 《The EMBO journal》1998,17(20):6076-6085
The P1 plasmid partition locus, P1 par, actively distributes plasmid copies to Escherichia coli daughter cells. It encodes two DNA sites and two proteins, ParA and ParB. Plasmid P7 uses a similar system, but the key macromolecular interactions are species specific. Homolog specificity scanning (HSS) exploits such specificities to map critical contact points between component macromolecules. The ParA protein contacts the par operon operator for operon autoregulation, and the ParB contacts the parS partition site during partition. Here, we refine the mapping of these contacts and extend the use of HSS to map protein-protein contacts. We found that ParB participates in autoregulation at the operator site by making a specific contact with ParA. Similarly, ParA acts in partition by making a specific contact with ParB bound at parS. Both these interactions involve contacts between a C-terminal region of ParA and the extreme N-terminus of ParB. As a single type of ParA-ParB complex appears to be involved in recognizing both DNA sites, the operator and the parS sites may both be occupied by a single protein complex during partition. The general HSS strategy may aid in solving the three-dimensional structures of large complexes of macromolecules.  相似文献   

3.
Using molecular dynamics simulations in explicit solvent, we investigated the behavior of a 50-bp DNA sequence containing the 434 bacteriophage operators OR1 and OR2 separated by an 8-bp spacer. Two simulations of 1 ns each were carried out, with DNA alone and with DNA complexed to dimers of the R1-69 DNA binding domain of the phage 434 cI repressor protein at the OR1 and OR2 sites. Strong correlations among average structural parameters are observed between our simulations and available experimental data for the bound OR1/OR2 subsites. In the free state, some differences appear between the three relevant fragments (OR1, the spacer, and OR2). Unbound OR1 exhibits a large, shallow major groove into which the base atoms protrude and is also bent toward the major groove. This structure is maintained because structural fluctuations are weak. Unbound OR2 resembles canonical B-DNA although the structural parameters show greater fluctuations, essentially due to a malleable step (the innermost CpA/TpG), absent in OR1. Complexation with the proteins slightly alters the base positions but strongly modifies the sugar and backbone motions. The most crucial repressor effects are changes in the flexibility of the OR1/OR2 sites. Structural fluctuations are enhanced for OR1, conferring a favorable energetic contribution to the OR1 binding, whereas they are reduced for OR2. Therefore, both structural and dynamic properties of DNA suggest OR1 is the most attractive site for the repressor, which may explain the different binding association constants observed for the OR1 and OR2 sites. Finally, we also investigated the impact of the protein on the DNA backbone dynamics and find that direct or indirect interactions facilitate the DNA structural variations required for achieving complementarity with the protein.  相似文献   

4.
Plasmodium vivax malaria caused is a public health problem that produces very high morbidity worldwide. During invasion of red blood cells the parasite requires the intervention of high molecular weight complex rhoptry proteins that are also essential for cytoadherence. PfClag9, a member of the RhopH multigene family, has been identified as being critical during Plasmodium falciparum infection. This study describes identifying and characterizing the pfclag9 ortholog in P. vivax (hereinafter named pvclag7). The pvclag7 gene is transcribed at the end of the intraerythrocytic cycle and is recognized by sera from humans who have been infected by P. vivax. PvClag7 subcellular localization has been also determined and, similar to what occurs with PfClag9, it co-localize with other proteins from the Rhoptry high molecular weight complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号