首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of morphology》2017,278(6):848-864
The median fins in extant actinopterygians are the product of millions of years of evolution. During this time, different developmental patterns for the dorsal and anal fins emerged leading to a high variation in median fin morphology and ontogeny. In this study, the development of anal and dorsal fins in atheriniforms is described and its consequences for the current phylogenetic hypothesis are discussed. Developmental series of five atheriniform species were investigated using clearing and staining as well as antibody staining. The skeletal elements of the second dorsal fin and the anal fin emerge in a bidirectional pattern. The first dorsal fin, however, arises separately in front of the second dorsal fin after this one is almost completely formed. The pterygiophores of the first dorsal fin, including the interdorsal pterygiophores, develop from caudal to rostral, but the fin‐spines of the first dorsal fin form in the opposite direction. This new mode of fin development has been found in all examined atheriniform species with two dorsal fins. Several morphological characters of atheriniforms, including interdorsal pterygiophores, are also found in one other taxon: the Mugiliformes. Thus, several dorsal fin characteristics may provide evidence for a closer relationship of these two taxa.  相似文献   

2.
Evolution of median fin modules in the axial skeleton of fishes   总被引:2,自引:0,他引:2  
Detailed examples of how hierarchical assemblages of modules change over time are few. We found broadly conserved phylogenetic patterns in the directions of development within the median fins of fishes. From these, we identify four modules involved in their positioning and patterning. The evolutionary sequence of their hierarchical assembly and secondary dissociation is described. The changes in these modules during the evolution of fishes appear to be produced through dissociation, duplication and divergence, and co-option. Although the relationship between identified median fin modules and underlying mechanisms is unclear, Hox addresses may be correlated. Comparing homologous gene expression and function in various fishes may test these predictions.The earliest actinopterygians likely had dorsal and anal fins that were symmetrically positioned via a positioning module. The common patterning (differentiation) of skeletal elements within the dorsal and anal fins may have been set into motion by linkage to this positioning module. Frequent evolutionary changes in dorsal and anal fin position indicate a high level of dissociability of the positioning module from the patterning module. In contrast, the patterning of the dorsal and anal fins remains linked: In nearly all fishes, the endo- and exoskeletal elements of the two fins co-differentiate. In all fishes, the exoskeletal fin rays differentiate in the same directions as the endoskeletal supports, indicating complete developmental integration. In acanthopterygians, a new first dorsal fin module evolved via duplication and divergence. The median fins provide an example of how basic modularity is maintained over 400 million years of evolution.  相似文献   

3.
The organization of tissues in appendages often affects their mechanical properties and function. In the fish family Labridae, swimming behavior is associated with pectoral fin flexural stiffness and morphology, where fins range on a continuum from stiff to relatively flexible fins. Across this diversity, pectoral fin flexural stiffness decreases exponentially along the length of any given fin ray, and ray stiffness decreases along the chord of the fin from the leading to trailing edge. In this study, we examine the morphological properties of fin rays, including the effective modulus in bending (E), second moment of area (I), segmentation, and branching patterns, and their impact on fin ray stiffness. We quantify intrinsic pectoral fin ray stiffness in similarly sized fins of two closely related species that employ fins of divergent mechanics, the flapping Gomphosus varius and the rowing Halichoeres bivittatus. While segmentation patterns and E were similar between species, measurements of I and the number of fin ray branch nodes were greater in G. varius than in H. bivittatus. A multiple regression model found that of these variables, I was always significantly correlated with fin ray flexural stiffness and that variation in I always explained the majority of the variation in flexural stiffness. Thus, while most of the morphological variables quantified in this study correlate with fin ray flexural stiffness, second moment of area is the greatest factor contributing to variation in flexural stiffness. Further, interspecific variation in fin ray branching pattern could be used as a means of tuning the effective stiffness of the fin webbing to differences in swimming behavior and hydrodynamics. The comparison of these results to other systems begins to unveil fundamental morphological features of biological beams and yields insight into the role of mechanical properties in fin deformation for aquatic locomotion.  相似文献   

4.
The West African lungfish (Protopterus annectens) performs benthic, pelvic fin‐driven locomotion with gaits common to tetrapods, the sister group of the lungfishes. Features of P. annectens movement are similar to those of modern tetrapods and include use of the distal region of the pelvic fin as a “foot,” use of the fin to lift the body above the substrate and rotation of the fin around the joint with the pelvis. In contrast to these similarities in movement, the pelvic fins of P. annectens are long, slender structures that are superficially very different from tetrapod limbs. Here, we describe the musculoskeletal anatomy of the pelvis and pelvic fins of P. annectens with dissection, magnetic resonance imaging, histology and 3D‐reconstruction methods. We found that the pelvis is embedded in the hypaxial muscle by a median rostral and two dorsolateral skeletal projections. The protractor and retractor muscles at the base of the pelvic fin are fan‐shaped muscles that cup the femur. The skeletal elements of the fin are serially repeating cartilage cylinders. Along the length of the fin, repeating truncated cones of muscles, the musculus circumradialis pelvici, are separated by connective tissue sheets that connect the skeletal elements to the skin. The simplicity of the protractor and retractor muscles at the base of the fin is surprising, given the complex rotational movement those muscles generate. In contrast, the series of many repeating segmental muscles along the length of the fin is consistent with the dexterity of bending of the distal limb. P. annectens can provide a window into soft‐tissue anatomy and sarcopterygian fish fin function that complements the fossil data from related taxa. This work, combined with previous behavioral examination of P. annectens, illustrates that fin morphologies that do not appear to be capable of walking can accomplish that function, and may inform the interpretation of fossil anatomical evidence. J. Morphol. 275:431–441, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
The pelvic fin position among teleost fishes has shifted rostrally during evolution, resulting in diversification of both behavior and habitat. We explored the developmental basis for the rostral shift in pelvic fin position in teleost fishes using zebrafish (abdominal pelvic fins) and Nile tilapia (thoracic pelvic fins). Cell fate mapping experiments revealed that changes in the distribution of lateral plate mesodermal cells accompany the trunk-tail protrusion. Presumptive pelvic fin cells are originally located at the body wall adjacent to the anterior limit of hoxc10a expression in the spinal cord, and their position shifts rostrally as the trunk grows. We then showed that the differences in pelvic fin position between zebrafish and Nile tilapia were not due to changes in expression or function of gdf11. We also found that hox-independent motoneurons located above the pelvic fins innervate into the pelvic musculature. Our results suggest that there is a common mechanism among teleosts and tetrapods that controls paired appendage positioning via gdf11, but in teleost fishes the position of prospective pelvic fin cells on the yolk surface shifts as the trunk grows. In addition, teleost motoneurons, which lack lateral motor columns, innervate the pelvic fins in a manner independent of the rostral-caudal patterns of hox expression in the spinal cord.  相似文献   

6.
The osteological development of the vertebral column and fins in shi drum Umbrina cirrosa was studied in order to improve knowledge for its introduction in Mediterranean aquaculture. The osteological development was studied in 171 individuals, of total length (LT) from 2·7 to 30·2 mm that were reared under the mesocosm technique. Vertebral ontogeny starts at 3·4 and 4·0 mm LT, with the formation of the first cartilaginous neural and haemal arches, and spines, respectively, and is completed with the full attainment of epicentrals (12·5 mm LT). The formation of vertebral centra occurs between 4·1 and 7·4 mm LT. Pectoral supports are the first fin elements to develop (3·0 mm LT), followed by those of the caudal fin (3·8 mm LT), pelvic fin (3·9 mm LT) and finally by those of the dorsal and anal fins (4·5 mm LT). The caudal fin is the first to develop fin rays and attain the full count of principal fin rays (4·5–6·8 mm LT), but the last to be fully completed with the formation of procurrent fin rays (6·9–17·5 mm LT). The next fins starting to present rays are the dorsal (5·3 mm LT) and the pectoral fins (5·6 mm LT), while the anal and pelvic fins are the last (5·7 mm LT). Following the caudal principal fin rays (6·8 mm LT), the dorsal, anal (6·9 mm LT), pelvic (7·4 mm LT) and pectoral fins (9·8 mm LT) are the next with fully completed ray counts. Aggregation of qualitative changes, such as the appearance of cartilages, the beginning and the complement of the ossification process and the full complement of elements in U. cirrosa were measured as cumulative frequency counts. These measurements reveal three ontogenetic intervals: one very developmentally active period during early life stages (from 3 to 5·9 mm LT), a second slower developmental period (from 6·0 to 8·9 mm LT) and finally a period of ontogeny more focused on structure refinement up to metamorphosis and settlement (>9·0 mm LT).  相似文献   

7.
8.
Adipose fins are appendages found on the dorsal midline between the dorsal and caudal fins in more than 6000 living species of teleost fishes. It has been consistently argued that adipose fins evolved once and have been lost repeatedly across teleosts owing to limited function. Here, we demonstrate that adipose fins originated repeatedly by using phylogenetic and anatomical evidence. This suggests that adipose fins are adaptive, although their function remains undetermined. To test for generalities in the evolution of form in de novo vertebrate fins, we studied the skeletal anatomy of adipose fins across 620 species belonging to 186 genera and 55 families. Adipose fins have repeatedly evolved endoskeletal plates, anterior dermal spines and fin rays. The repeated evolution of fin rays in adipose fins suggests that these fins can evolve new tissue types and increased structural complexity by expressing fin-associated developmental modules in these new territories. Patterns of skeletal elaboration differ between the various occurrences of adipose fins and challenge prevailing hypotheses for vertebrate fin origin. Adipose fins represent a powerful and, thus far, barely studied model for exploring the evolution of vertebrate limbs and the roles of adaptation and generative biases in morphological evolution.  相似文献   

9.
The fish fin is a breathtaking repository full of evolutionary diversity, novelty, and convergence. Over 500 million years, the adaptation to novel habitats has provided landscapes of fin diversity. Although comparative anatomy of evolutionarily divergent patterns over centuries has highlighted the fundamental architectures and evolutionary trends of fins, including convergent evolution, the developmental constraints on fin evolution, which bias the evolutionary trajectories of fin morphology, largely remain elusive. Here, we review the evolutionary history, developmental mechanisms, and evolutionary underpinnings of paired fins, illuminating possible developmental constraints on fin evolution. Our compilation of anatomical and genetic knowledge of fin development sheds light on the canalized and the unpredictable aspects of fin shape in evolution. Leveraged by an arsenal of genomic and genetic tools within the working arena of spectacular fin diversity, evolutionary developmental biology embarks on the establishment of conceptual framework for developmental constraints, previously enigmatic properties of evolution.  相似文献   

10.
Some fishes use modified body structures – including pelvic fins – to produce suction to facilitate stability in turbulent environments. This study compares the morphology and osteology of the pelvic suckers of representative lumpfishes (Cyclopteridae), snailfishes (Liparidae) and gobies (Gobiidae). In all species studied the midline sucker (pelvic suctorial organ [PSO]) is formed from the pelvic girdle and fin rays I and 5 of the pelvic fins, comprised of similar osteological elements to those found in the pelvic girdle and pelvic fin rays although the morphology of the bony elements is species‐specific. Pelvic suctorial organs in those fishes that lack pelvic girdles are therefore homologous to pelvic girdles. The phenotypic diversity seen in so few species indicates that many sucker morphologies have arisen, origination depending on the concerted development of muscular, skeletal, nervous, and skin body tissues. The structure of the soft rays of the pelvic fins in the liparids and cyclopterids is unusual and indicative of unconventional developmental patterning of fin ray halves and of evolution in the underlying mechanisms responsible for the development of midline suckers.  相似文献   

11.
The adipose fin of salmonids, once widely regarded as vestigial and lacking in function, was shown to be important to swimming efficiency in juvenile brown trout Salmo trutta. Examination with confocal microscopy of adipose fins of S. trutta stained with various antibodies targeting the nervous system revealed several large nerves entering the fin and anastomosing throughout its length. The branching nerves form a plexus with specific patterns of fine terminal branches in the leading and trailing edges. A network of astrocyte‐like cells (ALCs) that is linked through cell processes to nerves and structural collagen reacted positively with antibodies to glial cells. No other fish fins, including other adipose fins, have been shown to exhibit this type of neural architecture. Many vertebrate mechanoreceptors rely on collagen deformation to stimulate responses in afferent nerves; similarly, the adipose fin also may function as a mechanosensor, where passive mechanical deflection by water currents stimulates afferent nerves.  相似文献   

12.
 Retinoic acid (RA), a derivative of vitamin A, plays a critical role as a signaling molecule in axial patterning of vertebrates. Here we report that RA exposure of zebrafish (Danio rerio) and mummichog (Fundulus heteroclitus) embryos during gastrulation results in homeotic duplications of the pectoral fins in up to 94% of fish. We have observed three to four pairs of fins in an individual fish. Although some duplications are partial, many represent complete axial duplications of the pectoral girdle and fin and include coracoscapulae, proximal radials, and dermal fin elements. Fin duplications are observed only at a defined dose of RA. Inhibition of RA synthesis by exposure to citral during a narrow developmental window leads to fish which lack pectoral fins but can be rescued by addition of exogenous RA, suggesting that RA signaling is critical to fin specification during early development. The ability to consistently induce multiple fins in a large number of vertebrate embryos should contribute to the understanding of genetic regulation of the normal positioning of limbs during embryogenesis. Received: 30 August 1997 / Accepted: 6 December 1997  相似文献   

13.
Many benthic batoids utilize their pectoral fins for both undulatory locomotion and feeding. Certain derived, pelagic species of batoids possess cephalic lobes, which evolved from the anterior pectoral fins. These species utilize the pectoral fins for oscillatory locomotion while the cephalic lobes are used for feeding. The goal of this article was to compare the morphology of the cephalic lobes and anterior pectoral fins in species that possess and lack cephalic lobes. The skeletal elements (radials) of the cephalic lobes more closely resembled the radials in the pectoral fin of undulatory species. Second moment of area (I), calculated from cephalic lobe radial cross sections, and the number of joints revealed greater flexibility and resistance to bending in multiple directions as compared to pectoral fin radials of oscillatory species. The cephalic lobe musculature was more complex than the anterior pectoral fin musculature, with an additional muscle on the dorsal side, with fiber angles running obliquely to the radials. In Rhinoptera bonasus, a muscle presumably used to help elevate the cephalic lobes is described. Electrosensory pores were found on the cephalic lobes (except Mobula japonica) and anterior pectoral fins of undulatory swimmers, but absent from the anterior pectoral fins of oscillatory swimmers. Pore distributions were fairly uniform except in R. bonasus, which had higher pore numbers at the edges of the cephalic lobes. Overall, the cephalic lobes are unique in their anatomy but are more similar to the anterior pectoral fins of undulatory swimmers, having more flexibility and maneuverability compared to pectoral fins of oscillatory swimmers. The maneuverable cephalic lobes taking on the role of feeding may have allowed the switch to oscillatory locomotion and hence, a more pelagic lifestyle. J. Morphol. 274:1070–1083, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
We investigated the size at maturation, breeding season, and morphological development of larvae and juveniles of a freshwater pipefish Microphis leiaspis, which belongs to Gastrophori, collected from three rivers on the northern part of Okinawa-jima Island, Japan. The minimum size of brooding males was 105–123 mm in standard length (SL). The smallest mature female was estimated to be ca. 130 mm SL from the analysis of gonadosomatic index (GSI) and histological observations of gonads. The breeding season was estimated to be from June to December according to monthly changes in female GSI, histological observations of gonads, and monthly changes in the occurrence of brooding males. The number of eggs in the male brood pouch ranged from 75 to 241 (mean ± SD: 152 ± 52, n = 22). The male releases newly hatched larvae in freshwater areas. After newborns grow in the sea, they return to freshwater areas of the rivers and attain maturity. Microphis leiaspis was conformed to have an amphidromous life history. Notochord length of the released larvae was 6.1 mm, with a well-developed finfold. Larvae attained 11.1 mm SL, formation of the caudal and dorsal fin rays was complete, and the caudal fin became lozenge shaped at 30 days after the release, and juveniles reached 36.0 mm SL at 63 days after release. In the period between 30 and 63 days after the release, formation of all fins except the pectoral fins was completed, and caudal fin rays were extended and sector shaped with deep slits between each fin ray. The morphology of the released larvae of M. leiaspis is similar to that of Gastrophori species, and the morphology of juveniles similar to other species of Microphis.  相似文献   

15.
Ahn D  Ho RK 《Developmental biology》2008,322(1):220-233
During development of the limbs, Hox genes belonging to the paralogous groups 9-13 are expressed in three distinct phases, which play key roles in the segmental patterning of limb skeletons. In teleost fishes, which have a very different organization in their fin skeletons, it is not clear whether a similar patterning mechanism is at work. To determine whether Hox genes are also expressed in several distinct phases during teleost paired fin development, we re-analyzed the expression patterns of hox9-13 genes during development of pectoral fins in zebrafish. We found that, similar to tetrapod Hox genes, expression of hoxa/d genes in zebrafish pectoral fins occurs in three distinct phases, in which the most distal/third phase is correlated with the development of the most distal structure of the fin, the fin blade. Like in tetrapods, hox gene expression in zebrafish pectoral fins during the distal/third phase is dependent upon sonic hedgehog signaling (hoxa and hoxd genes) and the presence of a long-range enhancer (hoxa genes), which indicates that the regulatory mechanisms underlying tri-phasic expression of Hox genes have remained relatively unchanged during evolution. Our results suggest that, although simpler in organization, teleost fins do have a distal structure that might be considered comparable to the autopod region of limbs.  相似文献   

16.
The present study compares fin damages in gilthead seabream (Sparus aurata) and European seabass (Dicentrarchus labrax) according to their wild, escaped or farmed origins. In addition, the potential applicability of fin condition indices (Fin Erosion Index ‘FEI’ and Fin Splitting Index ‘FSI’) as identification tools is discussed. Farmed seabream fins evidenced more erosion and splitting (FEI ± SD: 2.1 ± 0.3; FSI ± SD: 1.9 ± 0.6) than wild seabream fins (FEI: 0.8 ± 0.6; FSI: 1.2 ± 0.9), a result of farming conditions in open‐sea cages. Escaped seabream fin erosion was between that of farmed and wild seabream (FEI: 1.6 ± 0.4), which could indicate that fins in farmed fish recover over time from farming abrasions once they are in the wild. However, the fins of escaped seabream seem to be weaker than those of the wild fish, and therefore might be more susceptible to suffer other types of erosion such as splitting or nipping (FSI: 2.3 ± 0.7). No significant differences were found in seabass FEI according to their origins, although wild seabass presented significantly more split caudal fins (FSI: 3.3 ± 2.8) than the farmed seabass (FSI: 1.2 ± 1.1) and escapees (FSI: 2.5 ± 1.6). Therefore, FEI for seabream could be used as tools not only to distinguish between wild and farmed fish, but also to identify recent escapees, improving further assessments on the contribution of seabream escapees in fishery landings. However, the healing potential of damaged fins must be considered for the proper identification of escapees. Use of fin condition indices from both species could be helpful for aquaculture management, to assess fish welfare in fish farms stocks, and improve the knowledge of handling, stock densities and open‐sea cage environment conditions.  相似文献   

17.
18.
A late-stage larva of Coryphaenoides pectoralis was first observed in situ and subsequently collected by the deep-sea submersible “Shinkai 2000” from mesopelagic waters at a depth of 530 m off Hokkaido, Japan. The larva (14.5 mm in head length, 149+ mm in total length) has fan-like pectoral fins, elongate first dorsal fin, pelvic fin and tail, 10 first dorsal rays (including 2 pseudospines), and 7 pelvic fin rays, 6 branchiostegal rays, no light organ, anus just anterior to anal fin origin, 2 retia and gas glands, 14 abdominal vertebrae, and previously reported larval pigmentation. Counts of second dorsal and anal fin rays, and caudal vertebrae, are reported for the first time.  相似文献   

19.
Display of bright and striking color patterns is a widespread way of communication in many animal species. Carotenoid‐based coloration accounts for most of the bright yellow, orange, and red displays in invertebrates, fish, amphibians, reptiles, and birds, being widely considered a signal of individual health. This type of coloration is under the influence of several factors, such as sexual selection, predator pressure, pigment availability, and light transmission. Fish offer numerous examples of visual communication by means of color patterns. We used a small cyprinodontid fish, Aphanius fasciatus (Valenciennes, 1821), as a model species to assess habitat constraints on the color display in male caudal fin. Populations from natural and open/closed artificial habitats were tested for differences in the pigmentation of caudal fins. The most important factors explaining the intensity of coloration were the habitat type and the chlorophyll concentration in the sediment, followed by water turbidity; yellow fins were observed in natural habitats with low chlorophyll concentration and high water turbidity, while orange fins occurred in artificial habitats with high chlorophyll concentration and low turbidity. Furthermore, A. fasciatus in artificial habitats showed a higher somatic and a lower reproductive allotment with respect to natural habitats, according to the existing literature on the species. Furthermore, in closed artificial habitats, where the most intense reddish coloration of caudal fins was observed, a trade‐off between somatic growth and the coloration intensity of a carotenoid‐based sexual ornament has been observed; in these populations, intensity of caudal fin coloration was negatively related to the somatic allotment. Results of this study suggested how both the pigmentation of male's caudal fin and the life history strategies of the species are constrained by habitat characteristics.  相似文献   

20.
Adipose fins are found on approximately 20% of ray-finned fish species. The apparently rudimentary anatomy of adipose fins inspired a longstanding hypothesis that these fins are vestigial and lack function. However, adipose fins have evolved repeatedly within Teleostei, suggesting adaptive function. Recently, adipose fins were proposed to function as mechanosensors, detecting fluid flow anterior to the caudal fin. Here we test the hypothesis that adipose fins are mechanosensitive in the catfish Corydoras aeneus. Neural activity, recorded from nerves that innervate the fin, was shown to encode information on both movement and position of the fin membrane, including the magnitude of fin membrane displacement. Thus, the adipose fin of C. aeneus is mechanosensitive and has the capacity to function as a ‘precaudal flow sensor’. These data force re-evaluation of adipose fin clipping, a common strategy for tagging fishes, and inform hypotheses of how function evolves in novel vertebrate appendages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号