首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MethodsPrimary hepatocytes stressed with the reactive oxygen species (ROS) inducers TNFα and H2O2 were incubated with a recombinant Reg3α protein. ALF was induced in C57BL/6J mice by an anti-CD95 antibody. Livers and primary hepatocytes were harvested for deoxycholate separation of cellular and extracellular fractions, immunostaining, immunoprecipitation and malondialdehyde assays. Fibrin deposition was studied by immunofluorescence in frozen liver explants from patients with ALF.ResultsFibrin deposition occurs during experimental and clinical acute liver injuries. Reg3α bound the resulting transient fibrin network, accumulated in the inflammatory extracellular matrix (ECM), greatly reduced extracellular ROS levels, and improved cell viability. Hepatocyte treatment with ligands of death receptors, e.g. TNFα and Fas, resulted in a twofold increase of malondialdehyde (MDA) level in the deoxycholate-insoluble fractions. Reg3α treatment maintained MDA at a level similar to control cells and thereby increased hepatocyte survival by 35%. No antioxidant effect of Reg3α was noted in the deoxycholate-soluble fractions. Preventing fibrin network formation with heparin suppressed the prosurvival effect of Reg3α.ConclusionsReg3α is an ECM-targeted ROS scavenger that binds the fibrin scaffold resulting from hepatocyte death during ALF. ECM alteration is an important pathogenic factor of ALF and a relevant target for pharmacotherapy.  相似文献   

2.
Ultrasonic-assisted extraction was employed for highly efficient separation of aroma oil from raspberry seeds. A central composite design with two variables and five levels was employed and effects of process variables of sonication time and extraction temperature on oil recovery and quality were investigated. Optimal conditions predicted by response surface methodology were sonication time of 37 min and extraction temperature of 54°C. Specifically, ultrasonic-assisted extraction (UAE) was able to provide a higher content of beneficial unsaturated fatty acids, whereas conventional Soxhlet extraction (SE) resulted in a higher amount of saturated fatty acids. Moreover, raspberry seed oil contained abundant amounts of edible linoleic acid and linolenic acid, which suggest raspberry seeds could be valuable edible sources of natural γ-linolenic acid products. In comparison with SE, UAE exerted higher free radical scavenging capacities. In addition, UAE significantly blocked H2O2-induced intracellular reactive oxygen species (ROS) generation.  相似文献   

3.
4.
In mammals, gonadotropins stimulate oocyte maturation via the epidermal growth factor (EGF) network, and the protein kinase C (PKC) signaling pathway mediates this process. Tumor necrosis factor-α converting enzyme (TACE) is an important protein responding to PKC activation. However, the detailed signaling cascade between PKC and TACE in follicle-stimulating hormone (FSH)-induced oocyte maturation in vitro remains unclear. In this study, we found that rottlerin (mallotoxin, MTX), the inhibitor of PKC δ and θ, blocked FSH-induced maturation of mouse cumulus-oocyte complexes (COCs) in vitro. We further clarified the relationship between two molecules downstream of PKC δ and θ and TACE in COCs: nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) and its products, reactive oxygen species (ROS). We proved that the respective inhibitors of NOX, ROS and TACE could block FSH-stimulated oocyte maturation dose-dependently, but these inhibitory effects could be reversed partially by amphiregulin (Areg), an EGF family member. Notably, inhibition of PKC δ and θ prevented FSH-induced translocation of two cytosolic components of NOX, p47phox and p67phox, to the plasma membrane in cumulus cells. Moreover, FSH-induced TACE activity in cumulus cells was decreased markedly by inhibition of NOX and ROS. In conclusion, PKC δ and θ possibly mediate FSH-induced meiotic resumption in mouse COCs via NOX-ROS-TACE signaling pathway.  相似文献   

5.
Objectives20‐hydroxyeicosatetraenoic acid (20‐HETE) is a metabolite of arachidonic acid catalysed by cytochrome P450 enzymes and plays an important role in cell death and proliferation. We hypothesized that 20‐HETE synthesis inhibition may have protective effects in traumatic brain injury (TBI) and investigated possible underlying molecular mechanisms.Materials and methodsNeurologic deficits, and lesion volume, reactive oxygen species (ROS) levels and cell death as assessed using immunofluorescence staining, transmission electron microscopy and Western blotting were used to determine post‐TBI effects of HET0016, an inhibitor of 20‐HETE synthesis, and their underlying mechanisms.ResultsThe level of 20‐HETE was found to be increased significantly after TBI in mice. 20‐HETE synthesis inhibition reduced neuronal apoptosis, ROS production and damage to mitochondrial structures after TBI. Mechanistically, HET0016 decreased the Drp1 level and increased the expression of Mfn1 and Mfn2 after TBI, indicating a reversal of the abnormal post‐TBI mitochondrial dynamics. HET0016 also promoted the restoration of SIRT1 and PGC‐1α in vivo, and a SIRT1 activator (SRT1720) reversed the downregulation of SIRT1 and PGC‐1α and the abnormal mitochondrial dynamics induced by 20‐HETE in vitro. Furthermore, plasma 20‐HETE levels were found to be higher in TBI patients with unfavourable neurological outcomes and were correlated with the GOS score.ConclusionsThe inhibition of 20‐HETE synthesis represents a novel strategy to mitigate TBI‐induced mitochondrial dysfunction and neuronal apoptosis by regulating the SIRT1/PGC‐1α pathway.  相似文献   

6.
AngII (angiotensin II)-induced excessive ROS (reactive oxygen species) generation and proliferation of VSMCs (vascular smooth muscle cells) is a critical contributor to the pathogenesis of atherosclerosis. PGC-1α [PPARγ (peroxisome-proliferator-activated receptor γ) co-activator-1α] is involved in the regulation of ROS generation, VSMC proliferation and energy metabolism. The aim of the present study was to investigate whether PGC-1α mediates AngII-induced ROS generation and VSMC hyperplasia. Our results showed that the protein content of PGC-1α was negatively correlated with an increase in cell proliferation and migration induced by AngII. Overexpression of PGC-1α inhibited AngII-induced proliferation and migration, ROS generation and NADPH oxidase activity in VSMCs. Conversely, Ad-shPGC-1α (adenovirus-mediated PGC-1α-specific shRNA) led to the opposite effects. Furthermore, the stimulatory effect of Ad-shPGC-1α on VSMC proliferation was significantly attenuated by antioxidant and NADPH oxidase inhibitors. Analysis of several key subunits of NADPH oxidase (Rac1, p22phox, p40phox, p47phox and p67phox) and mitochondrial ROS revealed that these mechanisms were not responsible for the observed effects of PGC-1α. However, we found that overexpression of PGC-1α promoted NOX1 degradation through the proteasome degradation pathway under AngII stimulation and consequently attenuated NOX1 (NADPH oxidase 1) expression. These alterations underlie the inhibitory effect of PGC-1α on NADPH oxidase activity. Our data support a critical role for PGC-1α in the regulation of proliferation and migration of VSMCs, and provide a useful strategy to protect vessels against atherosclerosis.  相似文献   

7.
With the existing knowledge of ATM''s role in therapeutic resistance, the present study aimed at identifying the molecular mechanisms that influence ATM to oscillate between chemoresistance and chemosensitivity. We observed that the redox status of tumors functions as a major determinant of ATM-dependent ‘resistance-to-apoptosis'' molecular switch. At a low reactive oxygen species (ROS) condition during genotoxic insult, the ATM/sumoylated-IKKγ interaction induced NFκB activation that resisted JNK-mediated apoptosis, whereas increasing cellular ROS restored ATM/JNK apoptotic signaling. A search for the upstream missing link revealed that high ROS induces oxidation and ubiquitin-mediated degradation of PIASγ, thereby disrupting PIASγ-IKKγ cross talk, a pre-requisite for IKKγ sumoylation and subsequent NFκB activation. Interruption in the PIASγ-mediated resistance pathway channels ATM signaling toward ATM/JNK pro-death circuitry. These in vitro results also translated to sensitive and resistant tumor allograft mouse models in which low ROS-induced resistance was over-ruled in PIASγ knockout tumors, while its overexpression inhibited high ROS-dependent apoptotic cues. Cumulatively, our findings identified an unappreciated yet critical combinatorial function of cellular ROS and PIASγ in regulating ATM-mediated chemosensitization of resistant tumors. Thus, therapeutic strategies employing ROS upregulation to inhibit PIASγ during genotoxic therapy may, in future, help to eliminate the problems of NFκB-mediated tumor drug resistance.  相似文献   

8.
Loss of mitochondrial membrane potential (ΔΨm) is known to be closely linked to cell death by various insults. However, whether acceleration of the ΔΨm recovery process prevents cell necrosis remains unclear. Here we examined the hypothesis that facilitated recovery of ΔΨm contributes to cytoprotection afforded by activation of the mitochondrial ATP-sensitive K+ (mKATP) channel or inactivation of glycogen synthase kinase-3β (GSK-3β). ΔΨm of H9c2 cells was determined by tetramethylrhodamine ethyl ester (TMRE) before or after 1-h exposure to antimycin A (AA), an inducer of reactive oxygen species (ROS) production at complex III. Opening of the mitochondrial permeability transition pore (mPTP) was determined by mitochondrial loading of calcein. AA reduced ΔΨm to 15±1% of the baseline and induced calcein leak from mitochondria. ΔΨm was recovered to 51±3% of the baseline and calcein-loadable mitochondria was 6±1% of the control at 1 h after washout of AA. mKATP channel openers improved the ΔΨm recovery and mitochondrial calcein to 73±2% and 30±7%, respectively, without change in ΔΨm during AA treatment. Activation of the mKATP channel induced inhibitory phosphorylation of GSK-3β and suppressed ROS production, LDH release and apoptosis after AA washout. Knockdown of GSK-3β and pharmacological inhibition of GSK-3β mimicked the effects of mKATP channel activation. ROS scavengers administered at the time of AA removal also improved recovery of ΔΨm. These results indicate that inactivation of GSK-3β directly or indirectly by mKATP channel activation facilitates recovery of ΔΨm by suppressing ROS production and mPTP opening, leading to cytoprotection from oxidant stress-induced cell death.  相似文献   

9.
ObjectivesAmong gynaecologic malignancies, ovarian cancer (OC) represents the leading cause of death for women worldwide. Current OC treatment involves cytoreductive surgery followed by platinum‐based chemotherapy, which is associated with severe side effects and development of drug resistance. Therefore, new therapeutic strategies are urgently needed. Herein, we evaluated the anti‐tumour effects of Vitamin E‐derived δ‐tocotrienol (δ‐TT) in two human OC cell lines, IGROV‐1 and SKOV‐3 cells.Materials and MethodsMTT and Trypan blue exclusion assays were used to assess δ‐TT cytotoxicity, alone or in combination with other molecules. δ‐TT effects on cell cycle, apoptosis, ROS generation and MAPK phosphorylation were investigated by flow cytometry, Western blot and immunofluorescence analyses. The synergism between δ‐TT and chemotherapy was evaluated by isobologram analysis.ResultsWe demonstrated that δ‐TT could induce cell cycle block at G1‐S phase and mitochondrial apoptosis in OC cell lines. In particular, we found that the proapoptotic activity of δ‐TT correlated with mitochondrial ROS production and subsequent JNK and p38 activation. Finally, we observed that the compound was able to synergize with cisplatin, not only enhancing its cytotoxicity in IGROV‐1 and SKOV‐3 cells but also re‐sensitizing IGROV‐1/Pt1 cell line to its anti‐tumour effects.Conclusionsδ‐TT triggers G1 phase cell cycle arrest and ROS/MAPK‐mediated apoptosis in OC cells and sensitizes them to platinum treatment, thus representing an interesting option for novel chemopreventive/therapeutic strategies for OC.  相似文献   

10.
Recently, we have shown that CXCL12/CXCR4 signaling plays an important role in gemcitabine resistance of pancreatic cancer (PC) cells. Here, we explored the effect of gemcitabine on this resistance mechanism. Our data demonstrate that gemcitabine induces CXCR4 expression in two PC cell lines (MiaPaCa and Colo357) in a dose- and time-dependent manner. Gemcitabine-induced CXCR4 expression is dependent on reactive oxygen species (ROS) generation because it is abrogated by pretreatment of PC cells with the free radical scavenger N-acetyl-L-cysteine. CXCR4 up-regulation by gemcitabine correlates with time-dependent accumulation of NF-κB and HIF-1α in the nucleus. Enhanced binding of NF-κB and HIF-1α to the CXCR4 promoter is observed in gemcitabine-treated PC cells, whereas their silencing by RNA interference causes suppression of gemcitabine-induced CXCR4 expression. ROS induction upon gemcitabine treatment precedes the nuclear accumulation of NF-κB and HIF-1α, and suppression of ROS diminishes these effects. The effect of ROS on NF-κB and HIF-1α is mediated through activation of ERK1/2 and Akt, and their pharmacological inhibition also suppresses gemcitabine-induced CXCR4 up-regulation. Interestingly, our data demonstrate that nuclear accumulation of NF-κB results from phosphorylation-induced degradation of IκBα, whereas HIF-1α up-regulation is NF-κB-dependent. Lastly, our data demonstrate that gemcitabine-treated PC cells are more motile and exhibit significantly greater invasiveness against a CXCL12 gradient. Together, these findings reinforce the role of CXCL12/CXCR4 signaling in gemcitabine resistance and point toward an unintended and undesired effect of chemotherapy.  相似文献   

11.
ObjectiveThe objective of this study was to analyse the differentially abundant proteins caused by freeze–thawing of ram sperm and explore candidate proteins of interest for their ability to improve ram sperm cryopreservation outcomes in vitro.MethodsSperm were from three mature Dorper. Fresh and frozen sperm proteins were extracted, and the differentially abundant proteins were analysed by mass spectrometry. Among these proteins, lactoferrin (LTF) was selected to be added before cryopreservation. Next, sperm samples were diluted in Tris extender, with the addition of 0, 10, 100, 500, and 1,000 μg/mL of LTF. After thawing, sperm quality was evaluated by motility, plasma membrane integrity, mitochondrial activity and reactive oxygen species (ROS).ResultsCryopreservation significantly altered the abundance of 40 proteins; the abundance of 16 proteins was increased, while that of 24 proteins was decreased. Next, LTF was added to Tris extender applied to ram sperm. The results showed that sperm motility and plasma membrane integrity were significantly improved (p<0.05) by supplementation with 10 μg/mL LTF compared to those in the control group. There was no significant difference in mitochondrial activity between the 0 μg/mL group and other groups (p>0.05). Supplementation of the cryoprotective extender with 10 μg/mL LTF led to decreased ROS levels compared with those in the control and other groups (p<0.05).ConclusionThe LTF is an important protein during cryopreservation, and the addition of 10 μg/mL LTF to a cryoprotective extender can significantly improve the function of frozen ram sperm.  相似文献   

12.
β-lapachone (β-lap) is a novel anticancer agent that selectively induces cell death in human cancer cells, by activation of the NQO1 NAD(P)H dehydrogenase and radical oxygen species (ROS) generation. We characterized the gene expression profile of budding yeast cells treated with β-lap using cDNA microarrays. Genes involved in tolerance to oxidative stress were differentially expressed in β-lap treated cells. β-lap treatment generated reactive oxygen species (ROS), which were efficiently blocked by dicoumarol, an inhibitor of NADH dehydrogenases. A yeast mutant in the mitocondrial NADH dehydrogenase Nde2p was found to be resistant to β-lap treatment, despite inducing ROS production in a WT manner. Most interestingly, DNA damage responses triggered by β-lap were abolished in the nde2Δ mutant. Amino acid biosynthesis genes were also induced in β-lap treated cells, suggesting that β-lap exposure somehow triggered the General Control of Nutrients (GCN) pathway. Accordingly, β-lap treatment increased phosphorylation of eIF2α subunit in a manner dependent on the Gcn2p kinase. eIF2α phosphorylation required Gcn1p, Gcn20p and Nde2p. Gcn2p was also required for cell survival upon exposure to β-lap and to elicit checkpoint responses. Remarkably, β-lap treatment increased phosphorylation of eIF2α in breast tumor cells, in a manner dependent on the Nde2p ortholog AIF, and the eIF2 kinase PERK. These findings uncover a new target pathway of β-lap in yeast and human cells and highlight a previously unknown functional connection between Nde2p, Gcn2p and DNA damage responses.  相似文献   

13.

Background

Sirtuin 3 (SIRT3) is one of the seven mammalian sirtuins, which are homologs of the yeast Sir2 gene. SIRT3 is the only sirtuin with a reported association with the human life span. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) plays important roles in adaptive thermogenesis, gluconeogenesis, mitochondrial biogenesis and respiration. PGC-1α induces several key reactive oxygen species (ROS)-detoxifying enzymes, but the molecular mechanism underlying this is not well understood.

Results

Here we show that PGC-1α strongly stimulated mouse Sirt3 gene expression in muscle cells and hepatocytes. Knockdown of PGC-1α led to decreased Sirt3 gene expression. PGC-1α activated the mouse SIRT3 promoter, which was mediated by an estrogen-related receptor (ERR) binding element (ERRE) (−407/−399) mapped to the promoter region. Chromatin immunoprecipitation and electrophoretic mobility shift assays confirmed that ERRα bound to the identified ERRE and PGC-1α co-localized with ERRα in the mSirt3 promoter. Knockdown of ERRα reduced the induction of Sirt3 by PGC-1α in C2C12 myotubes. Furthermore, Sirt3 was essential for PGC-1α-dependent induction of ROS-detoxifying enzymes and several components of the respiratory chain, including glutathione peroxidase-1, superoxide dismutase 2, ATP synthase 5c, and cytochrome c. Overexpression of SIRT3 or PGC-1α in C2C12 myotubes decreased basal ROS level. In contrast, knockdown of mSIRT3 increased basal ROS level and blocked the inhibitory effect of PGC-1α on cellular ROS production. Finally, SIRT3 stimulated mitochondrial biogenesis, and SIRT3 knockdown decreased the stimulatory effect of PGC-1α on mitochondrial biogenesis in C2C12 myotubes.

Conclusion

Our results indicate that Sirt3 functions as a downstream target gene of PGC-1α and mediates the PGC-1α effects on cellular ROS production and mitochondrial biogenesis. Thus, SIRT3 integrates cellular energy metabolism and ROS generation. The elucidation of the molecular mechanisms of SIRT3 regulation and its physiological functions may provide a novel target for treating ROS-related disease.  相似文献   

14.
Glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells requires an increase in intracellular free Ca2+ concentration ([Ca2+]). Glucose uptake into β-cells promotes Ca2+ influx and reactive oxygen species (ROS) generation. In other cell types, Ca2+ and ROS jointly induce Ca2+ release mediated by ryanodine receptor (RyR) channels. Therefore, we explored here if RyR-mediated Ca2+ release contributes to GSIS in β-cell islets isolated from male rats. Stimulatory glucose increased islet insulin secretion, and promoted ROS generation in islets and dissociated β-cells. Conventional PCR assays and immunostaining confirmed that β-cells express RyR2, the cardiac RyR isoform. Extended incubation of β-cell islets with inhibitory ryanodine suppressed GSIS; so did the antioxidant N-acetyl cysteine (NAC), which also decreased insulin secretion induced by glucose plus caffeine. Inhibitory ryanodine or NAC did not affect insulin secretion induced by glucose plus carbachol, which engages inositol 1,4,5-trisphosphate receptors. Incubation of islets with H2O2 in basal glucose increased insulin secretion 2-fold. Inhibitory ryanodine significantly decreased H2O2-stimulated insulin secretion and prevented the 4.5-fold increase of cytoplasmic [Ca2+] produced by incubation of dissociated β-cells with H2O2. Addition of stimulatory glucose or H2O2 (in basal glucose) to β-cells disaggregated from islets increased RyR2 S-glutathionylation to similar levels, measured by a proximity ligation assay; in contrast, NAC significantly reduced the RyR2 S-glutathionylation increase produced by stimulatory glucose. We propose that RyR2-mediated Ca2+ release, induced by the concomitant increases in [Ca2+] and ROS produced by stimulatory glucose, is an essential step in GSIS.  相似文献   

15.

Background

Oxysterols are promising biomarkers of neurodegenerative diseases that are linked with cholesterol and vitamin D metabolism. There is an unmet need for methods capable of sensitive, and simultaneous quantitation of multiple oxysterols, vitamin D and cholesterol pathway biomarkers.

Methods

A method for simultaneous determination of 5 major oxysterols, 25-hydroxy vitamin D3 and cholesterol in human plasma was developed. Total oxysterols were prepared by room temperature saponification followed by solid phase extraction from plasma spiked with deuterated internal standards. Oxysterols were resolved by reverse phase HPLC using a methanol/water/0.1% formic acid gradient. Oxysterols and 25-hydroxy vitamin D3 were detected with atmospheric pressure chemical ionization mass spectrometry in positive ion mode; in-series photodiode array detection at 204nm was used for cholesterol. Method validation studies were performed. Oxysterol levels in 220 plasma samples from healthy control subjects, multiple sclerosis and other neurological disorders patients were quantitated.

Results

Our method quantitated 5 oxysterols, cholesterol and 25-hydroxy vitamin D3 from 200 μL plasma in 35 minutes. Recoveries were >85% for all analytes and internal standards. The limits of detection were 3-10 ng/mL for oxysterols and 25-hydroxy vitamin D3 and 1 μg/mL for simultaneous detection of cholesterol. Analytical imprecision was <10 %CV for 24(S)-, 25-, 27-, 7α-hydroxycholesterol (HC) and cholesterol and ≤15 % for 7-keto-cholesterol. Multiple Sclerosis and other neurological disorder patients had lower 27-hydroxycholesterol levels compared to controls whereas 7α-hydroxycholesterol was lower specifically in Multiple Sclerosis.

Conclusion

The method is suitable for measuring plasma oxysterols levels in human health and disease. Analysis of human plasma indicates that the oxysterol, bile acid precursors 7α-hydroxycholesterol and 27-hydroxycholesterol are lower in Multiple Sclerosis and may serve as potential biomarkers of disease.  相似文献   

16.
Herein are reported unique properties of the human 2-oxoglutarate dehydrogenase multienzyme complex (OGDHc), a rate-limiting enzyme in the Krebs (citric acid) cycle. (a) Functionally competent 2-oxoglutarate dehydrogenase (E1o-h) and dihydrolipoyl succinyltransferase components have been expressed according to kinetic and spectroscopic evidence. (b) A stable free radical, consistent with the C2-(C2α-hydroxy)-γ-carboxypropylidene thiamin diphosphate (ThDP) cation radical was detected by electron spin resonance upon reaction of the E1o-h with 2-oxoglutarate (OG) by itself or when assembled from individual components into OGDHc. (c) An unusual stability of the E1o-h-bound C2-(2α-hydroxy)-γ-carboxypropylidene thiamin diphosphate (the “ThDP-enamine”/C2α-carbanion, the first postdecarboxylation intermediate) was observed, probably stabilized by the 5-carboxyl group of OG, not reported before. (d) The reaction of OG with the E1o-h gave rise to superoxide anion and hydrogen peroxide (reactive oxygen species (ROS)). (e) The relatively stable enzyme-bound enamine is the likely substrate for oxidation by O2, leading to the superoxide anion radical (in d) and the radical (in b). (f) The specific activity assessed for ROS formation compared with the NADH (overall complex) activity, as well as the fraction of radical intermediate occupying active centers of E1o-h are consistent with each other and indicate that radical/ROS formation is an “off-pathway” side reaction comprising less than 1% of the “on-pathway” reactivity. However, the nearly ubiquitous presence of OGDHc in human tissues, including the brain, makes these findings of considerable importance in human metabolism and perhaps disease.  相似文献   

17.
Emerging evidence suggests that reactive oxygen species (ROS) can stimulate the Wnt/β-catenin pathway in a number of cellular processes. However, potential sources of endogenous ROS have not been thoroughly explored. Here, we show that growth factor depletion in human neural progenitor cells induces ROS production in mitochondria. Elevated ROS levels augment activation of Wnt/β-catenin signaling that regulates neural differentiation. We find that growth factor depletion stimulates the release of Ca2+ from the endoplasmic reticulum stores. Ca2+ subsequently accumulates in the mitochondria and triggers ROS production. The inhibition of mitochondrial Ca2+ uptake with simultaneous growth factor depletion prevents the rise in ROS metabolism. Moreover, low ROS levels block the dissociation of the Wnt effector Dishevelled from nucleoredoxin. Attenuation of the response amplitudes of pathway effectors delays the onset of the Wnt/β-catenin pathway activation and results in markedly impaired neuronal differentiation. Our findings reveal Ca2+-mediated ROS metabolic cues that fine-tune the efficiency of cell differentiation by modulating the extent of the Wnt/β-catenin signaling output.  相似文献   

18.
A method was developed for the isolation of prostacyclin (PGI2) from whole blood in a fraction suitable for high pressure liquid chromatography (HPLC) separation of PGI2 and 6-keto-prostaglandin F (6-K-PGF). Prostacyclin was stabilized in whole blood by rapidly raising the pH to 10 with Na2CO3 and cooling the samples to 0°C. Under these conditions, 2.9% hydrolysis was observed after 20 min. Reverse phase extraction columns were used to directly extract both PGI2 and 6-K-PGF from the alkaline plasma with recoveries of greater than 95% using an acetonitrile/2mM Na2B4O7, pH 10, elution solvent mixture. An additional 1.7% hydrolysis was found during the column extraction procedure. Final separation of PGI2 and 6-K-PGF was performed with HPLC using an alkaline solvent system. This method is capable of rapidly and efficiently extracting and separating PGI2 and 6-K-PGF from whole blood or plasma. It introduces less than 5% hydrolysis of PGI2, thus providing a means of applying highly sensitive 6-K-PGF assays to the determination of PGI2 levels in physiological samples.  相似文献   

19.
BackgroundRecently, we demonstrated that losartan reduced the aortic root dilatation rate (AoDR) in adults with Marfan syndrome (MFS); however, responsiveness was diverse. The aim was to determine the role of transforming growth factor-β (TGF-β) as therapeutic biomarker for effectiveness of losartan on AoDR.MethodsBaseline plasma TGF-β levels of 22 healthy controls and 99 MFS patients, and TGF-β levels after 1 month of losartan treatment in 42 MFS patients were measured. AoDR was assessed by magnetic resonance imaging at baseline and after 3 years of follow-up.ResultsPatients with MFS had higher TGF-β levels compared with healthy controls (121 pg/ml versus 54 pg/mL, p = 0.006). After 1 month of therapy, losartan normalised the TGF-β level in 15 patients (36%); the other 27 patients (64%) showed a significant increase of TGF-β. After 3 years of losartan therapy, patients with a decrease in TGF-β had significantly higher AoDR compared with patients with increased TGF-β (1.5 mm/3 years versus 0.5 mm/3 years, p = 0.04). Patients showing a decrease in TGF-β after losartan therapy had significantly elevated baseline TGF-β levels compared with patients with increased TGF-β (189 pg/ml versus 94 pg/ml, p = 0.05).ConclusionPatients responding to losartan therapy with a reduction of the plasma TGF-β level had higher baseline TGF-β levels and a higher AoDR. Most likely, TGF-β levels may be considered to be a readout of the disease state of the aorta. We propose that increased angiotensin II is the initiator of aorta dilatation and is responsible for increased TGF-β levels in MFS. The concept of TGF-β as initiator of aortic dilatation in MFS patients should be nuanced.  相似文献   

20.
This study confirmed the ameliorating effect of immature persimmon (Diospyros kaki) ethanolic extract (IPEE) on neuronal cytotoxicity in amyloid beta (Aβ)1–42-induced ICR mice. The administration of IPEE ameliorated the cognitive dysfunction in Aβ1–42-induced mice by improving the spatial working memory, the short-term and long-term memory functions. IPEE protected the cerebral cholinergic system, such as the acetylcholine (ACh) level and acetylcholinesterase (AChE) activity, and antioxidant system, such as the superoxide dismutase (SOD), reduced glutathione (GSH) and malondialdehyde (MDA) contents. In addition, mitochondrial dysfunction against Aβ1–42-induced toxicity was reduced by regulating the reactive oxygen species (ROS), mitochondrial membrane potential and ATP contents. In addition, IPEE regulated the expression levels of tau signaling, such as TNF-α, p-JNK, p-Akt, p-GSK3β, p-tau, p-NF-κB, BAX and caspase 3. Finally, gallic acid, ellagic acid and quercetin 3-O-(6″-acetyl-glucoside) were identified as the physiological compounds of IPEE using ultra-performance liquid chromatography ion mobility separation quadrupole time-of-flight/tandem mass spectrometry (UPLC IMS Q-TOF/MS2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号