首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adult adipose tissue contains a large supply of progenitors that can renew fat cells for homeostatic tissue maintenance and adaptive growth or regeneration in response to external challenges. However, the in vivo mechanisms that control adipocyte progenitor behavior are poorly characterized. We recently demonstrated that recruitment of adipocyte progenitors by macrophages is a central feature of adipose tissue remodeling under various adipogenic conditions. Catabolic remodeling of white adipose tissue by β3-adrenergic receptor stimulation requires anti-inflammatory M2-polarized macrophages to clear dying adipocytes and to recruit new brown adipocytes from progenitors. In this Extra Views article, we discuss in greater detail the cellular elements of adipogenic niches and report a strategy to isolate and characterize the subpopulations of macrophages and adipocyte progenitors that actively participate in adrenergic tissue remodeling. Further characterization of these subpopulations may facilitate identification of new cellular targets to improve metabolic and immune function of adipose tissue.  相似文献   

2.
The discovery of metabolically active brown adipose tissue (BAT) in adult humans has fuelled the research of diverse aspects of this previously neglected tissue. BAT is solely present in mammals and its clearest physiological role is non‐shivering thermogenesis, owing to the capacity of brown adipocytes to dissipate metabolic energy as heat. Recently, a number of other possible functions have been proposed, including direct regulation of glucose and lipid homeostasis and the secretion of a number of factors with diverse regulatory actions. Herein, we review recent advances in general biological knowledge of BAT and discuss the possible implications of this tissue in human metabolic health. In particular, we confront the claimed thermogenic potential of BAT for human energy balance and body mass regulation, mostly based on animal studies, with the most recent quantifications of human BAT.  相似文献   

3.
The adipose tissue (AT) has a major role in contributing to obesity-related pathologies through regulating systemic immunometabolism. The pathogenicity of the AT is underpinned by its remarkable plasticity to be reprogrammed during obesity, in the perspectives of tissue morphology, extracellular matrix (ECM) composition, angiogenesis, immunometabolic homoeostasis and circadian rhythmicity. Dysregulation in these features escalates the pathogenesis conferred by this endometabolic organ. Intriguingly, the potential to be reprogrammed appears to be an Achilles’ heel of the obese AT that can be targeted for the management of obesity and its associated comorbidities. Here, we provide an overview of the reprogramming processes of white AT (WAT), with a focus on their dynamics and pleiotropic actions over local and systemic homoeostases, followed by a discussion of potential strategies favouring therapeutic reprogramming. The potential involvement of AT remodelling in the pathogenesis of COVID-19 is also discussed.  相似文献   

4.
Obesity, defined as an excess of adipose tissue that adversely affects health, is a major cause of morbidity and mortality. However, to date, understanding the structure and function of human adipose tissue has been limited by the inability to visualize cellular components due to the innate structure of adipocytes, which are characterized by large lipid droplets. Combining the iDISCO and the CUBIC protocols for whole tissue staining and optical clearing, we developed a protocol to enable immunostaining and clearing of human subcutaneous white adipose tissue (WAT) obtained from individuals with severe obesity. We were able to perform immunolabelling of sympathetic nerve terminals in whole WAT and subsequent optical clearing by eliminating lipids to render the opaque tissue completely transparent. We then used light sheet confocal microscopy to visualize sympathetic innervation of human WAT from obese individuals in a three-dimensional manner. We demonstrate the visualization of sympathetic nerve terminals in human WAT. This protocol can be modified to visualize other structures such as blood vessels involved in the development, maintenance and function of human adipose tissue in health and disease.  相似文献   

5.
In this article, we discuss inflammation associated with adipose tissue dysfunction as a potential link with obesity-related insulin resistance, and how obesity-related inflammatory components, such as immune cells, cytokines/chemokines and adipocytokines, induce obesity-related pathologies.  相似文献   

6.
《Cell reports》2023,42(3):112166
  1. Download : Download high-res image (226KB)
  2. Download : Download full-size image
  相似文献   

7.
8.
脂肪组织不仅是机体的能量储存库,而且也是重要的内分泌器官。脂肪组织分泌多种激素和细胞因子,参与调节机体多种生理和病理过程。目前飞速发展的蛋白质组学技术,为深入研究脂肪发育的分子机制及其代谢紊乱发生的遗传机理提供了有力的工具。对蛋白质组学在脂肪组织中的研究进展进行了综述,为脂肪组织的发育调控及代谢疾病的治疗提供了新的思路。  相似文献   

9.
Objective: To compare the inter‐rater and intra‐rater reliability and analysis time of two methods for quantifying visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) volumes from magnetic resonance (MR) images. Research Methods and Procedures: Ten subjects (BMI, 27.0 ± 2.1 kg/m2; 56 years of age ± 4 years) underwent MR imaging of the abdomen. Ten transverse T1‐weighted images were selected from each scan and analyzed using two software packages that differ in principle. The first method, ANALYZE version 5.0, represents the manual threshold method, and the second, HIPPO version 1.3, is based on the fuzzy clustering approach. Inter‐rater reliability for each method was assessed by comparing the intra‐class correlation coefficients (ICCs) for VAT and SAT results from two evaluators, and intra‐rater reliability for each method was assessed by comparing ICCs for VAT and SAT analyses performed 1 week apart by the same evaluator. The total time for analysis also was compared between methods. Results: The inter‐rater reliability for VAT was greater with HIPPO than with ANALYZE (ICC = 0.996 vs. 0.828), whereas inter‐rater reliability for SAT did not differ between methods (ICC = 0.975 and 0.987). The intra‐rater reliability was equally high with HIPPO and ANALYZE for both VAT (ICC = 0.998 vs. 0.992) and SAT (ICC = 0.996 vs. 0.992). HIPPO required less than one‐half as much analysis time as ANALYZE (15.9 ± 4.4 vs. 36.5 ± 8.2 minutes, p < 0.0001). Discussion: HIPPO software appears advantageous for the quantification of VAT from multislice MR images because inter‐rater results are more reliable, and it is more time‐efficient than less automated methods.  相似文献   

10.
Expression of apoE in adipocytes has been shown to have an important role in modulating adipocyte triglyceride (TG) metabolism and gene expression that is independent of circulating and extracellular apoE. The impact of adipocyte expression of common human apoE isoforms was evaluated using adipocytes harvested from human apoE2, -3, and -4 knock-in mice. Expression of the apoE2 isoform was associated with an increase in adipocyte apoE gene expression and apoE synthesis. Newly synthesized apoE2 was unstable in adipocytes and demonstrated increased degradation and decreased secretion. ApoE2-expressing mice were hyperlipidemic, and had increased size of gonadal fat pads and of adipocytes, compared with apoE3 mice. In isolated cells, however, expression of the apoE2 isoform produced defective lipogenesis and increased TG hydrolysis. Incubation of adipose tissue with apoE3-containing TG-rich lipoproteins resulted in a significant increase in TG in adipose tissue from apoE3 and -E4 mice, but not apoE2 mice. Reduced capacity to internalize FFA as lipogenic substrate contributed to defective lipogenesis. Newly synthesized apoE2 is unstable in adipocytes and results in decreased adipocyte TG synthesis and defective FA uptake. These changes recapitulate those observed in apoE knockout adipocytes and have implications for understanding metabolic disturbances in humans expressing the E2 isoform.  相似文献   

11.
12.
The gross anatomy of white adipose tissue was studied in seven carcasses representing three lemurid species (Lemur catta, Eulemur fulvus, E. mongoz) to validate in vivo methods of assessing fatness, and to contribute to a comprehensive database on the organization of adipose tissue in Mammalia. During the years preceding their deaths, subjects had been either caged or semi-provisioned under semi-captive conditions, and their body masses had been recorded several times annually. All specimens were as fat or fatter than anthropoid primates maintained for long periods under comparable conditions. At least eight superficial, four intra-abdominal, and two intermuscular adipose depots were described, all of which were comparable to those described previously for macaques and humans. All typical mammalian depots were present. Many superficial depots adhered tightly to the skin and/or underlying muscles. The superficial “paunch” depot on the outer ventral wall of the abdomen, characteristic of anthropoid primates, was found in all specimens. The existence of this depot in lemurs suggests that it evolved early in Primates. As in monkeys and humans, the paunch was very variable in size, massive in obese specimens but almost absent in moderately lean ones, confirming that extensive accumulation and selective depletion of adipose tissue at this depot is a special feature of Primates. In some obese specimens, adipose tissue on the ventral and lateral thorax and on the inner dorsal wall of the abdomen, extending around the kidneys and into the pelvic canal, was also massive. The investigation allowed for improvement of protocols for external measurement in ongoing research on growth, mass, and fatness in ringtailed and redfronted lemurs. Comparisons of subjects' ranges of body mass change during adult life with masses of adipose tissue found upon dissection suggested that much of lemurs' predictable seasonal change in body mass is due to changes in the mass of white adipose tissue. © 1995 Wiley-Liss, Inc.  相似文献   

13.
14.
Obesity, insulin resistance and the metabolic syndrome, are characterized by expansion and inflammation of adipose tissue, including the depots surrounding the heart and the blood vessels. Epicardial adipose tissue (EAT) is a visceral thoracic fat depot located along the large coronary arteries and on the surface of the ventricles and the apex of the heart, whereas perivascular adipose tissue (PVAT) surrounds the arteries. Both fat depots are not separated by a fascia from the underlying tissue. Therefore, factors secreted from epicardial and PVAT, like free fatty acids and adipokines, can directly affect the function of the heart and blood vessels. In this review, we describe the alterations found in EAT and PVAT in pathological states like obesity, type 2 diabetes, the metabolic syndrome and coronary artery disease. Furthermore, we discuss how changes in adipokine expression and secretion associated with these pathological states could contribute to the pathogenesis of cardiac contractile and vascular dysfunction.  相似文献   

15.
Omental and subcutaneous adipose tissue steroid levels in obese men   总被引:4,自引:0,他引:4  
We examined plasma and fat tissue sex steroid levels in a sample of 28 men aged 24.8-62.2 years (average BMI value of 46.3 +/- 12.7 kg/m(2)). Abdominal adipose tissue biopsies were obtained during general or obesity surgery. Omental and subcutaneous adipose tissue steroid levels were measured by gas chromatography and chemical ionization mass spectrometry after appropriate extraction procedures. BMI and waist circumference were negatively correlated with plasma testosterone (r = -0.49 and -0.50, respectively, p < 0.01) and dihydrotestosterone (r = -0.58 and -0.56, respectively, p < 0.01), and positively associated with estrone levels (r = 0.64 and 0.62, respectively, p < 0.001). Regional differences in adipose tissue steroid levels were observed for dihydrotestosterone (p < 0.005), androstenedione (p < 0.0001) and dehydroepiandrosterone levels (p < 0.05), which were all significantly more concentrated in omental versus subcutaneous fat. Positive significant associations were found between circulating level of a steroid and its concentration in omental and subcutaneous adipose tissue, for estrone (r = 0.72 and 0.57, respectively, p < 0.01), testosterone (r = 0.66 and 0.58, respectively, p < 0.01) and dihydrotestosterone (r = 0.58 and 0.45, respectively, p < 0.05). Positive correlations were observed between plasma dehydroepiandrosterone-sulfate and omental (r = 0.56, p < 0.01) as well as subcutaneous adipose tissue dehydroepiandrosterone level (r = 0.38, p = 0.05). Positive significant associations were found between omental adipocyte responsiveness to positive lipolytic stimuli (isoproterenol, dibutyryl cyclic AMP and forskolin) and plasma or omental fat tissue androgen levels. In conclusion, although plasma androgen or estrogen levels are strong correlates of adipose tissue steroid content both in the omental and subcutaneous fat depots, regional differences may be observed. Androgen concentration differences in omental versus subcutaneous adipose tissue suggest a depot-specific impact of these hormones on adipocyte function and metabolism.  相似文献   

16.
Human adipose tissue obtained by liposuction is easily accessible and an abundant potential source of autologous cells for regenerative medicine applications. After digestion of the tissue and removal of differentiated adipocytes, the so-called stromal vascular fraction (SVF) of adipose, a mix of various cell types, is obtained. SVF contains mesenchymal fibroblastic cells, able to adhere to culture plastic and to generate large colonies in vitro , that closely resemble bone marrow-derived colony forming units-fibroblastic, and whose expanded progeny, adipose mesenchymal stem/stromal cells (ASC), show strong similarities with bone marrow mesenchymal stem cells. The sialomucin CD34, which is well known as a hematopoietic stem cell marker, is also expressed by ASC in native adipose tissue but its expression is gradually lost upon standard ASC expansion in vitro . Surprisingly little is known about the functional role of CD34 in the biology and tissue forming capacity of SVF cells and ASC. The present editorial provides a short introduction to the CD34 family of sialomucins and reviews the data from the literature concerning ex- pression and function of these proteins in SVF cells and their in vitro expanded progeny.  相似文献   

17.
Disruption of the regulator for G protein signaling 14 (RGS14) knockout (KO) in mice extends their lifespan and has multiple beneficial effects related to healthful aging, that is, protection from obesity, as reflected by reduced white adipose tissue, protection against cold exposure, and improved metabolism. The observed beneficial effects were mediated by improved mitochondrial function. But most importantly, the main mechanism responsible for the salutary properties of the RGS14 KO involved an increase in brown adipose tissue (BAT), which was confirmed by surgical BAT removal and transplantation to wild‐type (WT) mice, a surgical simulation of a molecular knockout. This technique reversed the phenotype of the RGS14 KO and WT, resulting in loss of the improved metabolism and protection against cold exposure in RGS14 KO and conferring this protection to the WT BAT recipients. Another mechanism mediating the salutary features in the RGS14 KO was increased SIRT3. This mechanism was confirmed in the RGS14 X SIRT3 double KO, which no longer demonstrated improved metabolism and protection against cold exposure. Loss of function of the Caenorhabditis elegans RGS‐14 homolog confirmed the evolutionary conservation of this mechanism. Thus, disruption of RGS14 is a model of healthful aging, as it not only enhances lifespan, but also protects against obesity and cold exposure and improves metabolism with a key mechanism of increased BAT, which, when removed, eliminates the features of healthful aging.  相似文献   

18.
Prostaglandins (PGs) belong to the group lipid mediators and can act as local hormones. They contain 20 carbon atoms, including a 5-carbon ring, and are biosynthesized from membrane phospholipid derived arachidonic acid through the arachidonate cyclooxygenase (COX) pathway with the help of various terminal synthase enzymes. Prostacyclin (prostaglandin I2) is one of the major prostanoids produced with the help of prostacyclin synthase (prostaglandin I2 synthase) enzyme and rapidly hydrolyzed into 6-keto-PGF in biological fluids. Obesity indicates an excess of body adiposity, which is globally considered as one of the major health disasters responsible for developing complex pathological situations in the human body. Adipose tissues can produce various PGs, and thus, the level and the molecular activity of these endogenously synthesized PGs are considered critical for the development of obesity. In this regard, the involvement of prostacyclin in adipogenesis has been studied in the last few decades. The current review, along with the background of other related PGs, presents the several molecular aspects of endogenous prostaglandin I2 in adipose tissue development. Especially, the regulation of life cycle of adipocytes, impact on terminal differentiation, activity through prostacyclin receptor (IP), autocrine-paracrine manner, thermogenic adipose tissue remodeling and some future experimental aspects of prostacyclin have been focused upon in this study. This discussion might assist to develop new drug molecules acting on the signaling pathways of prostacyclin and devise therapeutic strategies for treating obesity.  相似文献   

19.
Alcohol consumption leads to adipose tissue lipoatrophy and mobilization of FFAs, which contributes to hepatic fat accumulation in alcoholic liver disease. This study aimed to investigate the role of fibroblast growth factor (FGF)21, a metabolic regulator, in the regulation of chronic-binge alcohol-induced adipose tissue lipolysis. FGF21 KO mice were subjected to chronic-binge alcohol exposure, and epididymal white adipose tissue lipolysis and liver steatosis were investigated. Alcohol exposure caused adipose intracellular cAMP elevation and activation of lipolytic enzymes, leading to FFA mobilization in both WT and FGF21 KO mice. However, alcohol-induced systemic elevation of catecholamine, which is known to be a major player in adipose lipolysis by binding to the β-adrenergic receptor, was markedly inhibited in KO mice. Supplementation with recombinant human FGF21 to alcohol-exposed FGF21 KO mice resulted in an increase in fat loss in parallel with an increase of circulating norepinephrine concentration. Furthermore, alcohol consumption-induced fatty liver was blunted in the KO mice, indicating an inhibition of fatty acid reverse transport from adipose to the liver in the KO mice. Taken together, our studies demonstrate that FGF21 KO mice are protected from alcohol-induced adipose tissue excess-lipolysis through a mechanism involving systemic catecholamine release.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号