首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The majority of recently emerging infectious diseases in humans is due to cross-species pathogen transmissions from animals. To establish a productive infection in new host species, viruses must overcome barriers to replication mediated by diverse and rapidly evolving host restriction factors such as protein kinase R (PKR). Many viral antagonists of these restriction factors are species specific. For example, the rhesus cytomegalovirus PKR antagonist, RhTRS1, inhibits PKR in some African green monkey (AGM) cells, but does not inhibit human or rhesus macaque PKR. To model the evolutionary changes necessary for cross-species transmission, we generated a recombinant vaccinia virus that expresses RhTRS1 in a strain that lacks PKR inhibitors E3L and K3L (VVΔEΔK+RhTRS1). Serially passaging VVΔEΔK+RhTRS1 in minimally-permissive AGM cells increased viral replication 10- to 100-fold. Notably, adaptation in these AGM cells also improved virus replication 1000- to 10,000-fold in human and rhesus cells. Genetic analyses including deep sequencing revealed amplification of the rhtrs1 locus in the adapted viruses. Supplying additional rhtrs1 in trans confirmed that amplification alone was sufficient to improve VVΔEΔK+RhTRS1 replication. Viruses with amplified rhtrs1 completely blocked AGM PKR, but only partially blocked human PKR, consistent with the replication properties of these viruses in AGM and human cells. Finally, in contrast to AGM-adapted viruses, which could be serially propagated in human cells, VVΔEΔK+RhTRS1 yielded no progeny virus after only three passages in human cells. Thus, rhtrs1 amplification in a minimally permissive intermediate host was a necessary step, enabling expansion of the virus range to previously nonpermissive hosts. These data support the hypothesis that amplification of a weak viral antagonist may be a general evolutionary mechanism to permit replication in otherwise resistant host species, providing a molecular foothold that could enable further adaptations necessary for efficient replication in the new host.  相似文献   

2.
To facilitate identification of rhesus cytomegalovirus (RhCMV)-infected cells, a recombinant virus expressing enhanced green fluorescent protein (EGFP), designated RhCMV-EGFP, was constructed. An expression cassette for EGFP under the control of the simian virus 40 (SV40) early promoter was inserted into the intergenic region between unique short 1 (US1) and US2 of the RhCMV genome by homologous recombination. RhCMV-EGFP exhibited comparable growth kinetics to that of wild-type virus in rhesus fibroblast cultures and retained its pathogenicity in monkey fetuses. Typical neurologic syndromes caused by CMV infection were observed in all fetuses experimentally inoculated with RhCMV-EGFP, as evidenced by sonographic and gross examinations. Systemic RhCMV infections were established in all fetuses, as viral antigen was detected in multiple organs and virus was isolated from fetal blood samples. The engineered viral genome was stable following rapid serial passages in vitro and multiple rounds of replication in vivo. Infected cells could be readily distinguished by green fluorescence both in tissue cultures and in the fetuses. In addition, EGFP expression was detected in various cell types that were permissive to RhCMV infection, consistent with a broad tissue tropism of the SV40 promoter. These results demonstrate that RhCMV can be successfully engineered without loss of wild-type replication and pathogenic potential. Further, the spectrum of cortical anomalies and the distribution of infected cells in the brain tissues indicated that RhCMV may have preferentially targeted immature neuronal cells. The pattern of RhCMV infection in the central nervous system may offer an explanation for the severe developmental outcomes associated with congenital human CMV infection early in gestation.  相似文献   

3.
Rhesus cytomegalovirus (RhCMV) is an emerging model for human cytomegalovirus (HCMV) pathogenesis that facilitates experimental CMV infection of a natural primate host closely related to humans. We have generated a library of RhCMV mutants with lesions in genes whose HCMV orthologues have been characterized as nonessential for replication in human fibroblasts, and we characterized their replication in rhesus fibroblasts and epithelial cells. The RhCMV mutants grew well in fibroblasts, as predicted by earlier studies with HCMV. However, mutations in four genes caused replication defects in rhesus retinal pigment epithelial cells: Rh01 (an HCMV TRL1 orthologue), Rh159 (HCMV UL148), Rh160 (HCMV UL132), and Rh203 (HCMV US22). Growth of the Rh01-deficient mutant was examined in detail. After entry into epithelial cells, the mutant expressed representative viral proteins, accumulated viral DNA, and generated infectious virus, but it failed to spread efficiently. We conclude that Rh01 is a cell tropism determinant that has the potential to dramatically affect virus spread and pathogenesis.  相似文献   

4.
The host antiviral protein kinase R (PKR) has rapidly evolved during primate evolution, likely in response to challenges posed by many different viral antagonists, such as the TRS1 gene of cytomegaloviruses (CMVs). In turn, viral antagonists have adapted to changes in PKR. As a result of this "arms race," modern TRS1 alleles in CMVs may function differently in cells derived from alternative species. We have previously shown that human CMV TRS1 (HuTRS1) blocks the PKR pathway and rescues replication of a vaccinia virus mutant lacking its major PKR antagonist in human cells. We now demonstrate that HuTRS1 does not have these activities in Old World monkey cells. Conversely, the rhesus cytomegalovirus homologue of HuTRS1 (RhTRS1) fulfills these functions in African green monkey cells, but not rhesus or human cells. Both TRS1 proteins bind to double-stranded RNA and, in the cell types in which they can rescue VVΔE3L replication, they also bind to PKR and prevent phosphorylation of the α-subunit of eukaryotic initiation factor 2. However, while HuTRS1 binds to inactive human PKR and prevents its autophosphorylation, RhTRS1 binds to phosphorylated African green monkey PKR. These studies reveal that evolutionary adaptations in this critical host defense protein have altered its binding interface in a way that has resulted in a qualitatively altered mechanism of PKR antagonism by viral TRS1 alleles from different CMVs. These results suggest that PKR antagonism is likely one of the factors that contributes to species specificity of cytomegalovirus replication.  相似文献   

5.
Rhesus cytomegalovirus (RhCMV), the homolog of human cytomegalovirus (HCMV), serves as a model for understanding the pathogenesis of HCMV and for developing candidate vaccines. In order to develop a replication-defective virus as a vaccine candidate, we constructed RhCMV with glycoprotein L (gL) deleted. RhCMV gL was essential for viral replication, and virus with gL deleted could only replicate in cells expressing RhCMV gL. Noncomplementing cells infected with RhCMV with gL deleted released intact, noninfectious RhCMV particles that were indistinguishable from wild-type RhCMV by electron microscopy and could be rescued by treatment of cells with polyethylene glycol. In addition, noncomplementing cells infected with RhCMV with gL deleted produced levels of gB, the major target of neutralizing antibodies, at levels similar to those observed in cells infected with wild-type RhCMV. Since RhCMV and HCMV gL share 53% amino acid identity, we determined whether the two proteins could complement the heterologous virus. Cells transfected with an HCMV bacterial artificial chromosome with gL deleted yielded virus that could replicate in human cells expressing HCMV gL. This is the second HCMV mutant with an essential glycoprotein deleted that has been complemented in cell culture. Finally, we found that HCMV gL could not complement the replication of RhCMV with gL deleted and that RhCMV gL could not complement the replication of HCMV with gL deleted. These data indicate that RhCMV and HCMV gL are both essential for replication of their corresponding viruses and, although the two gLs are highly homologous, they are unable to complement each another.  相似文献   

6.
7.
Development of breeding colonies of rhesus macaques (Macaca mulatta) that are specific pathogen-free (SPF) for rhesus cytomegalovirus (RhCMV) is relatively straightforward and requires few modifications from current SPF programs. Infants separated from the dam at or within a few days of birth and cohoused with similarly treated animals remain RhCMV seronegative indefinitely, provided they are never directly or indirectly exposed to a RhCMV-infected monkey. By systematically cohousing seronegative animals into larger social cohorts, breeding populations of animals SPF for RhCMV can be established. The additional costs involved in expanding the current definition of SPF status to include RhCMV are incremental compared with the money already being spent on existing SPF efforts. Moreover, the large increase in research opportunities available for RhCMV-free animals arguably would far exceed the development costs. Potential new areas of research and further expansion of existing research efforts involving these newly defined SPF animals would have direct implications for improvements in human health.Abbreviations: HCMV, human cytomegalovirus; NHP, nonhuman primate; RhCMV, rhesus cytomegalovirus; SPF, specific pathogen-freeThe impetus for expanding the current SPF definition to include RhCMV is 2-fold. The first is the increasing number of studies involving infection of rhesus macaques with RhCMV as a nonhuman primate (NHP) model of human infection with human cytomegalovirus (HCMV). The second is the recognition that the current SPF protocols result in animals that are also uninfected with RhCMV, such that a relatively minor change in derivation can generate monkeys that meet the current SPF definition and that are uninfected with other endemic viruses, including RhCMV and simian foamy virus.  相似文献   

8.
Herpes simplex virus mutants lacking the gamma(1)34.5 gene are not destructive to normal tissues but are potent cytolytic agents in human tumor cells in which the activation of double-stranded RNA-dependent protein kinase (PKR) is suppressed. Thus, replication of a Deltagamma(1)34.5 mutant (R3616) in 12 genetically defined cancer cell lines correlates with suppression of PKR but not with the genotype of RAS. Extensive analyses of two cell lines transduced with either dominant negative MEK (dnMEK) or constitutively active MEK (caMEK) indicated that in R3616 mutant-infected cells dnMEK enabled PKR activation and decreased virus yields, whereas caMEK suppressed PKR and enabled better viral replication and cell destruction in transduced cells in vitro or in mouse xenografts. The results indicate that activated MEK mediates the suppression of PKR and that the status of MEK predicts the ability of Deltagamma(1)34.5 mutant viruses to replicate in and destroy tumor cells.  相似文献   

9.
One of the most important innate host defense mechanisms against viral infection is the induction of interferon (IFN)-stimulated genes (ISGs). Immediately upon entry, viruses activate interferon-regulatory factor 3 (IRF3), as well as nuclear factor kappaB (NF-kappaB), which transactivate a subset of ISGs, proinflammatory genes, as well as IFN genes. Most large DNA viruses exhibit countermeasures against induction of this response. However, whereas human cytomegalovirus (HCMV) inhibits IFN-dependent induction of ISGs, IFN-independent induction of ISGs is observed both in the presence and, even moreso, in the absence of viral gene expression. Rhesus CMV (RhCMV) is an emerging animal model for HCMV sharing important similarities in primary structure, epidemiology, and pathogenesis. To determine whether RhCMV would similarly induce ISGs, we performed DNA microarray and quantitative PCR analysis of ISG expression in rhesus fibroblasts infected with RhCMV or HCMV. In contrast to HCMV, however, RhCMV did not induce expression of ISGs or proinflammatory genes at any time after infection. Moreover, dimerization and nuclear accumulation of IRF3, readily observed in HCMV-infected cells, was absent from RhCMV-infected cells, whereas neither virus seemed to activate NFkappaB. RhCMV also blocked IRF3 activation by live or UV-inactivated HCMV, suggesting that RhCMV inhibits viral IRF3 activation and the resultant ISG induction with extraordinary efficiency. Since infection during inhibition of protein expression by cycloheximide or inactivation of viral gene expression by UV treatment did not trigger IRF3 activation or ISG expression by RhCMV, we conclude that RhCMV virions contain a novel inhibitor of IFN-independent viral induction of ISG expression by IRF3.  相似文献   

10.
The use of animal models of human cytomegalovirus (HCMV) infection is critical to refine HCMV vaccine candidates. Previous reports have demonstrated that immunization of rhesus monkeys against rhesus cytomegalovirus (RhCMV) can reduce both local and systemic replication of RhCMV following experimental RhCMV challenge. These studies used prime/boost combinations of DNA expression plasmids alone or DNA priming and boosting with either inactivated virion particles or modified vaccinia virus Ankara (MVA) expressing the same antigens. Viral outcomes included reduced RhCMV replication at the site of subcutaneous inoculation and RhCMV viremia following intravenous inoculation. Since shedding of cytomegalovirus from mucosal surfaces is critical for horizontal transmission of the virus, DNA priming/MVA boosting was evaluated for the ability to reduce oral shedding of RhCMV following subcutaneous challenge. Of six rhesus monkeys vaccinated exclusively against RhCMV glycoprotein B (gB), phosphoprotein 65 (pp65), and immediate-early 1 (IE1), half showed viral loads in saliva that were lower than those of control monkeys by 1 to 3 orders of magnitude. Further, there was a strong association of memory pp65 T cell responses postchallenge in animals exhibiting the greatest reduction in oral shedding. These results highlight the fact that a DNA/MVA vaccination regimen can achieve a notable reduction in a critical parameter of viral replication postchallenge. The recently completed clinical trial of a gB subunit vaccine in which the rate of HCMV infection was reduced by 50% in the individuals receiving the vaccine is consistent with the results of this study suggesting that additional immunogens are likely essential for maximum protection in an outbred human population.  相似文献   

11.
12.
Background Congenital human cytomegalovirus (HCMV) infection can result in lifelong neurological deficits. Seronegative pregnant woman often acquire primary HCMV from clinically asymptomatic, but HCMV‐shedding children. Methods Potential age‐related differences in viral and immune parameters of primary RhCMV infection were examined in an oral rhesus CMV infection model in specific pathogen free macaques. RhCMV shedding was measured by real time PCR in plasma, saliva and urine. Immune parameters, including neutralizing and binding antibodies and RhCMV‐specific T cell responses, were assessed in longitudinally collected blood samples. Results The oral RhCMV infection model in infant SPF rhesus macaques demonstrated that (i) the susceptibility to oral RhCMV infection declines with age, and (ii) infant macaques shed RhCMV more persistently and at higher titers compared to adult macaques. (iii) Conclusions The oral infant RhCMV infection model appears to reflect viral pathogenesis in human HCMV‐infected children. Larger studies are needed to define immune parameters associated with better control of RhCMV in adult compared to young animals.  相似文献   

13.
CMV infection induces robust CD4+ T cell responses in immunocompetent hosts that orchestrate immune control of viral replication, dissemination, and disease. In this study, we characterized the clonotypic composition of CD4+ T cell populations specific for rhesus CMV (RhCMV) in chronically infected adult rhesus macaques (RM) and in juvenile RM undergoing primary RhCMV infection and subsequent secondary challenge with RhCMV. In adult RM with established chronic infection, RhCMV-specific CD4+ T cell populations exhibited stable, pauciclonal structures with skewed hierarchies dominated by two or three clonotypes. During primary infection, in contrast, the initial RhCMV-specific CD4+ T cell populations were highly polyclonal and progressive evolution to the chronic pattern manifest in adults occurred over the ensuing 2-3 years. Clear patterns of clonal succession were observed during this maturation process, such that clonotypes present in the acute phase were largely replaced over time. However, rechallenge with RhCMV expanded virus-specific CD4+ T cell clonotypes identified solely during acute infection. These findings indicate that, during persistent viral infection, substantial selection pressures and ongoing clonotype recruitment shape the specific CD4+ T cell repertoire and that rapidly exhausted or superseded clonotypes often remain within the memory T cell pool.  相似文献   

14.
15.
Protein kinase R (PKR) is a vital component of host innate immunity against viral infection. However, the mechanism underlying inactivation of PKR by influenza A virus (IAV) remains elusive. Here, we found that vault RNAs (vtRNAs) were greatly induced in A549 cells and mouse lungs after infection with IAV. The viral NS1 protein was shown to be the inducer triggering the upregulation of vtRNAs. Importantly, silencing vtRNA in A549 cells significantly inhibited IAV replication, whereas overexpression of vtRNAs markedly promoted the viral replication. Furthermore, in vivo studies showed that disrupting vtRNA expression in mice significantly decreased IAV replication in infected lungs. The vtRNA knockdown animals exhibited significantly enhanced resistance to IAV infection, as evidenced by attenuated acute lung injury and spleen atrophy and consequently increased survival rates. Interestingly, vtRNAs promoted viral replication through repressing the activation of PKR and the subsequent antiviral interferon response. In addition, increased expression of vtRNAs was required for efficient suppression of PKR by NS1 during IAV infection. Moreover, vtRNAs were also significantly upregulated by infections of several other viruses and involved in the inactivation of PKR signaling by these viruses. These results reveal a novel mechanism by which some viruses circumvent PKR-mediated innate immunity.  相似文献   

16.
Cytomegaloviruses are highly host restricted, resulting in cospeciation with their hosts. As a natural pathogen of rhesus macaques (RM), rhesus cytomegalovirus (RhCMV) has therefore emerged as a highly relevant experimental model for pathogenesis and vaccine development due to its close evolutionary relationship to human CMV (HCMV). Most in vivo experiments performed with RhCMV employed strain 68-1 cloned as a bacterial artificial chromosome (BAC). However, the complete genome sequence of the 68-1 BAC has not been determined. Furthermore, the gene content of the RhCMV genome is unknown, and previous open reading frame (ORF) predictions relied solely on uninterrupted ORFs with an arbitrary cutoff of 300 bp. To obtain a more precise picture of the actual proteins encoded by the most commonly used molecular clone of RhCMV, we reevaluated the RhCMV 68-1 BAC genome by whole-genome shotgun sequencing and determined the protein content of the resulting RhCMV virions by proteomics. By comparing the RhCMV genome to those of several related Old World monkey (OWM) CMVs, we were able to filter out many unlikely ORFs and obtain a simplified map of the RhCMV genome. This comparative genomics analysis suggests a high degree of ORF conservation among OWM CMVs, thus decreasing the likelihood that ORFs found only in RhCMV comprise true genes. Moreover, virion proteomics independently validated the revised ORF predictions, since only proteins that were conserved across OWM CMVs could be detected. Taken together, these data suggest a much higher conservation of genome and virion structure between CMVs of humans, apes, and OWMs than previously assumed.  相似文献   

17.
Sequences present at the genomic termini of herpesviruses become linked during lytic-phase replication and provide the substrate for cleavage and packaging of unit length viral genomes. We have previously shown that homologs of the consensus herpesvirus cleavage-packaging signals, pac1 and pac2, are located at the left and right genomic termini of human herpesvirus 6 (HHV-6), respectively. Immediately adjacent to these elements are two distinct arrays of human telomeric repeat sequences (TRS). We now show that the unique sequence element formed at the junction of HHV-6B genome concatemers (pac2-pac1) is necessary and sufficient for virally mediated cleavage of plasmid DNAs containing the HHV-6B lytic-phase origin of DNA replication (oriLyt). The concatemeric junction sequence also allowed for the packaging of these plasmid molecules into intracellular nucleocapsids as well as mature, infectious viral particles. In addition, this element significantly enhanced the replication efficiency of oriLyt-containing plasmids in virally infected cells. Experiments revealed that the concatemeric junction sequence possesses an unusual, S1 nuclease-sensitive conformation (anisomorphic DNA), which might play a role in this apparent enhancement of DNA replication—although additional studies will be required to test this hypothesis. Finally, we also analyzed whether the presence of flanking viral TRS had any effect on the functional activity of the minimal concatemeric junction (pac2-pac1). These experiments revealed that the TRS motifs, either alone or in combination, had no effect on the efficiency of virally mediated DNA replication or DNA cleavage. Taken together, these data show that the cleavage and packaging of HHV-6 DNA are mediated by cis-acting consensus sequences similar to those found in other herpesviruses, and that these sequences also influence the efficiency of HHV-6 DNA replication. Since the adjacent TRS do not influence either viral cleavage and packaging or viral DNA replication, their function remains uncertain.  相似文献   

18.
Human cytomegalovirus (HCMV) possesses low pathogenic potential in an immunocompetent host. In the immunosuppressed host, however, a wide spectrum of infection outcomes, ranging from asymptomatic to life threatening, can follow either primary or nonprimary infection. The variability in the manifestations of HCMV infection in immunosuppressed individuals implies that there is a threshold of host antiviral immunity that can effectively limit disease potential. We used a nonhuman primate model of CMV infection to assess the relationship between CMV disease and the levels of developing anti-CMV immunity. Naive rhesus macaques were inoculated with rhesus cytomegalovirus (RhCMV) followed 2 or 11 weeks later by inoculation with pathogenic simian immunodeficiency virus SIVmac239. Two of four monkeys inoculated with SIV at 2 weeks after inoculation with RhCMV died within 11 weeks with simian AIDS (SAIDS), including activated RhCMV infection. Neither animal had detectable anti-SIV antibodies. The other two animals died 17 and 27 weeks after SIV inoculation with either SAIDS or early lymphoid depletion, although no histological evidence of activated RhCMV was observed. Both had weak anti-SIV antibody titers. RhCMV antibody responses for this group of monkeys were significantly below those of control animals inoculated with only RhCMV. In addition, all animals of this group had persistent RhCMV DNA in plasma and high copy numbers of RhCMV in tissues. In contrast, animals that were inoculated with SIV at 11 weeks after RhCMV infection rarely exhibited RhCMV DNA in plasma, had low copy numbers of RhCMV DNA in most tissues, and did not develop early onset of SAIDS or activated RhCMV. SIV antibody titers were mostly robust and sustained in these monkeys. SIV inoculation blunted further development of RhCMV humoral responses, unlike the normal pattern of development in control monkeys following RhCMV inoculation. Anti-RhCMV immunoglobulin G levels and avidity were slightly below control values, but levels maintained were higher than those observed following SIV infection at 2 weeks after RhCMV inoculation. These findings demonstrate that SIV produces long-lasting insults to the humoral immune system beginning very early after SIV infection. The results also indicate that anti-RhCMV immune development at 11 weeks after infection was sufficient to protect the host from acute RhCMV sequelae following SIV infection, in contrast to the lack of protection afforded by only 2 weeks of immune response to RhCMV. As previously observed, monkeys that were not able to mount a significant immune response to SIV were the most susceptible to SAIDS, including activated RhCMV infection. Rapid development of SAIDS in animals inoculated with SIV 2 weeks after RhCMV inoculation suggests that RhCMV can augment SIV pathogenesis, particularly during primary infection by both viruses.  相似文献   

19.
Cytomegalovirus (CMV) infection is the most common opportunistic infection in immunosuppressed individuals, such as transplant recipients or people living with HIV/AIDS, and congenital CMV is the leading viral cause of developmental disabilities in infants. Due to the highly species-specific nature of CMV, animal models that closely recapitulate human CMV (HCMV) are of growing importance for vaccine development. Here we present the genomic sequence of a novel nonhuman primate CMV from cynomolgus macaques (Macaca fascicularis; CyCMV). CyCMV (Ottawa strain) was isolated from the urine of a healthy, captive-bred, 4-year-old cynomolgus macaque of Philippine origin, and the viral genome was sequenced using next-generation Illumina sequencing to an average of 516-fold coverage. The CyCMV genome is 218,041 bp in length, with 49.5% G+C content and 84% protein-coding density. We have identified 262 putative open reading frames (ORFs) with an average coding length of 789 bp. The genomic organization of CyCMV is largely colinear with that of rhesus macaque CMV (RhCMV). Of the 262 CyCMV ORFs, 137 are homologous to HCMV genes, 243 are homologous to RhCMV 68.1, and 200 are homologous to RhCMV 180.92. CyCMV encodes four ORFs that are not present in RhCMV strain 68.1 or 180.92 but have homologies with HCMV (UL30, UL74A, UL126, and UL146). Similar to HCMV, CyCMV does not produce the RhCMV-specific viral homologue of cyclooxygenase-2. This newly characterized CMV may provide a novel model in which to study CMV biology and HCMV vaccine development.  相似文献   

20.
Rigorous investigation of many functions encoded by cytomegaloviruses (CMVs) requires analysis in the context of virus-host interactions. To facilitate the construction of rhesus CMV (RhCMV) mutants for in vivo studies, a bacterial artificial chromosome (BAC) containing an enhanced green fluorescent protein (EGFP) cassette was engineered into the intergenic region between unique short 1 (US1) and US2 of the full-length viral genome by Cre/lox-mediated recombination. Infectious virions were recovered from rhesus fibroblasts transfected with pRhCMV/BAC-EGFP. However, peak virus yields of cells infected with reconstituted progeny were 10-fold lower than wild-type RhCMV, suggesting that inclusion of the 9-kb BAC sequence impeded viral replication. Accordingly, pRhCMV/BAC-EGFP was further modified to enable efficient excision of the BAC vector from the viral genome after transfection into mammalian cells. Allelic exchange was performed in bacteria to substitute the cre recombinase gene for egfp. Transfection of rhesus fibroblasts with pRhCMV/BAC-Cre resulted in a pure progeny population lacking the vector backbone without the need of further manipulation. The genomic structure of the BAC-reconstituted virus, RhCMV-loxP(r), was identical to that of wild-type RhCMV except for the residual loxP site. The presence of the loxP sequence did not alter the expression profiles of neighboring open reading frames. In addition, RhCMV-loxP(r) replicated with wild-type kinetics both in tissue culture and seronegative immunocompetent macaques. Restriction analysis of the viral genome present within individual BAC clones and virions revealed that (i) RhCMV exhibits a simple genome structure and that (ii) there is a variable number of a 750-bp iterative sequence present at the S terminus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号