首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Plant diversity is predicted to be positively linked to the diversity of herbivores and predators in a foodweb. Yet, the relationship between plant and animal diversity is explained by a variety of competing hypotheses, with mixed empirical results for each hypothesis. We sampled arthropods for over a decade in an experiment that manipulated the number of grassland plant species. We found that herbivore and predator species richness were strongly, positively related to plant species richness, and that these relationships were caused by different mechanisms at herbivore and predator trophic levels. Even more dramatic was the threefold increase, from low- to high-plant species richness, in abundances of predatory and parasitoid arthropods relative to their herbivorous prey. Our results demonstrate that, over the long term, the loss of plant species propagates through food webs, greatly decreasing arthropod species richness, shifting a predator-dominated trophic structure to being herbivore dominated, and likely impacting ecosystem functioning and services.  相似文献   

2.
为探明不同邻作对云南普洱地区玉米田节肢动物多样性的影响.采用目测法和粘虫板等多种诱集法对邻作咖啡、水稻、李树及单作的玉米田节肢动物群落进行系统调查,分析不同邻作作物对玉米田节肢动物群落的影响.结果表明:不同邻作玉米田天敌亚群落主要为双翅目和膜翅目,其中玉米单作田赤池信息量准则(AIC)值最低为-16.858,最优模型为...  相似文献   

3.
4.
1 Many apple growers in Washington State, U.S.A. use mating disruption (MD) for control of codling moth, Cydia pomonella (Linnaeus). Fewer applications of synthetic, broad‐spectrum insecticides are made in MD orchards than in orchards under conventional (C) management. Spider abundance and diversity in MD, C and certified organic (O) orchards were compared. Spiders inhabiting the trees (arboreal), the understory vegetation, and the ground surface were studied. 2 Total arboreal spider density and total understory spider density were significantly higher in O orchards than in MD and C orchards. Many species occurred in both the trees and the understory. 3 Arboreal, visually orientated, hunting spiders and arboreal ambushers/runners were significantly more abundant in O orchards compared to C and MD orchards. Visual hunters were significantly more abundant in MD compared to C orchards. Numbers of spiders in two other guilds (web‐makers and nocturnal hunters) showed no statistical differences with respect to orchard management type. 4 The highest density of ground surface‐dwelling spiders occurred in one of the O orchards. Two C orchards had higher densities than any MD orchard. Ground surface species were distinct from those in the understory and the trees. 5 With one exception, an orchard's arboreal fauna was most similar to that of another orchard under the same type of pest management. Three exceptions were noted among comparisons of the understory faunas. The ground surface‐dwelling fauna of one O orchard was distinctive, whereas that in the second O orchard was similar to the C and MD orchards. 6 Reduced use of synthetic, broad‐spectrum insecticides in MD orchards did not result in arboreal spider densities comparable to those found in O orchards. A contributing factor may be that all species were univoltine. Spider populations may thus be severely reduced by even a small number of synthetic, broad‐spectrum insecticide applications and the time required for recovery may be lengthy.  相似文献   

5.
6.
1. In natural ecosystems, plants containing hosts for parasitoids are often embedded within heterogeneous plant communities. These plant communities surrounding host‐infested plants may influence the host‐finding ability of parasitoids. 2. A release‐recapture‐approach was used to examine whether the diversity and structural complexity of the community surrounding a host‐infested plant influences the aggregation behaviour of the leaf‐miner parasitoid Dacnusa sibirica Telenga and naturally occurring local leaf‐miner parasitoids. Released and locally present parasitoids were collected on potted Jacobaea vulgaris Gaertn.plants infested with the generalist leaf‐miner Chromatomyia syngenesiae Hardy. The plants were placed in experimentally established plant communities differing in plant diversity (1–9 species) and habitat complexity (bare ground, mown vegetation, and tall vegetation). Additionally, parasitoids were reared out from host mines on the trap plants. 3. Plant diversity did not influence the mean number of recaptured D. sibirica or captures of other locally present parasitoids but the number of recaptured parasitoids was influenced by habitat complexity. No D. sibirica parasitoids were recaptured in the bare ground plots or plots with mown vegetation. The mean number of recaptured D. sibirica generally increased with increasing complexity of the plant community, whereas locally present parasitoids were captured more frequently in communities with more bare ground. There was a unimodal relationship between the number of reared out parasitoids and diversity of the surrounding vegetation with the highest density of emerged parasitoids at intermediate diversity levels. 4. The present study adds to the thus far limited body of literature examining the aggregation behaviour of parasitoids in the field and suggests that the preference of parasitoids to aggregate in complex versus simple vegetation is association specific and thus depends on the parasitoid species as well as the identity of the plant community.  相似文献   

7.
Abstract A greater understanding of the relative impact of insecticide use on non‐target species is critical for the incorporation of natural enemies into integrated pest management strategies. Here we use a small‐plot field trial to examine the relative impact of an insecticide on herbivores and predators found in soybean (Glycine max L.), and to highlight the issues associated with calculating impact factors from these studies. The pyrethroid insecticide (Deltamethrin) caused a significant reduction in invertebrate abundance in the treated plots, and populations did not recover to pre‐treatment levels even 20 days after spraying. To assess the relative impact of the spray on arthropods we first examined the mean difference in abundance in each plot before and after spraying. All herbivores decreased in abundance in the sprayed plots but increased in the control plots after spraying. Most predators (excluding hemipterans) showed a decrease in the control plots but a proportionally greater decrease in the sprayed plots. Next we examined the corrected percentage population reduction calculated using Abbott's formula. All predators (including Araneae) experienced a greater reduction (mean 87% ± 3.54 SE) than herbivores (mean 56% ± 4.37 SE) and Araneae alone (mean 71% ± 8.12 SE). The range in values across the plots varied and made categorising overall impact subjective for some taxa. Despite the constraints associated with small‐plot trials, by using a combination of impact factors and examining community‐level response across time, we did get some indication of the likely impact of this insecticide if used in a commercial situation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号