共查询到20条相似文献,搜索用时 0 毫秒
1.
XiaoYan Gao YingYu Lai XueShan Luo DeWei Peng QiaoQiao Li HuiShan Zhou YuMei Xue HuiMing Guo JunFei Zhao Hui Yang SuJuan Kuang ZhaoYu Wang MengZhen Zhang ChunYu Deng ShuLin Wu Fang Rao 《Aging cell》2023,22(1)
Atrial fibrosis induced by aging is one of the main causes of atrial fibrillation (AF), but the potential molecular mechanism is not clear. Acetyltransferase p300 participates in the cellular senescence and fibrosis, which might be involved in the age‐related atrial fibrosis. Four microarray datasets generated from atrial tissue of AF patients and sinus rhythm (SR) controls were analyzed to find the possible relationship of p300 (EP300) with senescence and fibrosis. And then, biochemical assays and in vivo electrophysiological examination were performed on older AF patients, aging mice, and senescent atrial fibroblasts. The results showed that (1) the left atrial tissues of older AF patients, aging mouse, and senescence human atrial fibroblasts had more severe atrial fibrosis and higher protein expression levels of p300, p53/acetylated p53 (ac‐p53)/p21, Smad3/p‐Smads, and fibrosis‐related factors. (2) p300 inhibitor curcumin and p300 knockdown treated aging mouse and senescence human atrial fibroblasts reduced the senescence ratio of atrial fibroblasts, ameliorated the atrial fibrosis, and decreased the AF inducibility. In contrast, over‐expression of p300 can lead to the senescence of atrial fibroblasts and atrial fibrosis. (3) p53 knockdown decreased the expression of aging and fibrosis‐related proteins. (4) Co‐immunoprecipitation and immunofluorescence showed that p53 forms a complex with smad3 and directly regulates the expression of smad3 in atrial fibroblasts. Our findings suggest that the mechanism of atrial fibrosis induced by aging is, at least, partially dependent on the regulation of p300, which provides new sights into the AF treatment, especially for the elderly. 相似文献
2.
Rahul Rai Tianjiao Sun Veronica Ramirez Elizabeth Lux Mesut Eren Douglas E. Vaughan Asish K. Ghosh 《Journal of cellular and molecular medicine》2019,23(4):3026-3031
Epigenetic dysregulation plays a crucial role in cardiovascular diseases. Previously, we reported that acetyltransferase p300 (ATp300) inhibitor L002 prevents hypertension‐induced cardiac hypertrophy and fibrosis in a murine model. In this short communication, we show that treatment of hypertensive mice with ATp300‐specific small molecule inhibitor L002 or C646 reverses hypertension‐induced left ventricular hypertrophy, cardiac fibrosis and diastolic dysfunction, without reducing elevated blood pressures. Biochemically, treatment with L002 and C646 also reverse hypertension‐induced histone acetylation and myofibroblast differentiation in murine ventricles. Our results confirm and extend the role of ATp300, a major epigenetic regulator, in the pathobiology of cardiac hypertrophy and fibrosis. Most importantly, we identify the efficacies of ATp300 inhibitors C646 and L002 in reversing hypertension‐induced cardiac hypertrophy and fibrosis, and discover new anti‐hypertrophic and anti‐fibrotic candidates. 相似文献
3.
Arnaud Augert Christine Payré Yvan de Launoit Jesus Gil Gérard Lambeau David Bernard 《EMBO reports》2009,10(3):271-277
Senescence is a stable proliferative arrest induced by various stresses such as telomere erosion, oncogenic or oxidative stress. Compelling evidence suggests that it acts as a barrier against tumour development. Describing new mechanisms that favour an escape from senescence can thus reveal new insights into tumorigenesis. To identify new genes controlling the senescence programme, we performed a loss‐of‐function genetic screen in primary human fibroblasts. We report that knockdown of the M‐type receptor PLA2R (phospholipase A2 receptor) prevents the onset of replicative senescence and diminishes stress‐induced senescence. Interestingly, expression of PLA2R increases during replicative senescence, and its ectopic expression results in premature senescence. We show that PLA2R regulates senescence in a reactive oxygen species–DNA damage–p53‐dependent manner. Taken together, our study identifies PLA2R as a potential new tumour suppressor gene crucial in the induction of cellular senescence through the activation of the p53 pathway. 相似文献
4.
5.
6.
7.
Valentina Gambino Giulia De Michele Oriella Venezia Pierluigi Migliaccio Valentina Dall'Olio Loris Bernard Simone Paolo Minardi Maria Agnese Della Fazia Daniela Bartoli Giuseppe Servillo Myriam Alcalay Lucilla Luzi Marco Giorgio Heidi Scrable Pier Giuseppe Pelicci Enrica Migliaccio 《Aging cell》2013,12(3):435-445
8.
MAGE-A genes are a subfamily of the melanoma antigen genes (MAGEs), whose expression is restricted to tumor cells of different origin and normal tissues of the human germline. Although the specific function of individual MAGE-A proteins is being currently explored, compelling evidence suggest their involvement in the regulation of different pathways during tumor progression. We have previously reported that MageA2 binds histone deacetylase (HDAC)3 and represses p53-dependent apoptosis in response to chemotherapeutic drugs. The promyelocytic leukemia (PML) tumor suppressor is a regulator of p53 acetylation and function in cellular senescence. Here, we demonstrate that MageA2 interferes with p53 acetylation at PML-nuclear bodies (NBs) and with PMLIV-dependent activation of p53. Moreover, a fraction of MageA2 colocalizes with PML-NBs through direct association with PML, and decreases PMLIV sumoylation through an HDAC-dependent mechanism. This reduction in PML post-translational modification promotes defects in PML-NBs formation. Remarkably, we show that in human fibroblasts expressing RasV12 oncogene, MageA2 expression decreases cellular senescence and increases proliferation. These results correlate with a reduction in NBs number and an impaired p53 response. All these data suggest that MageA2, in addition to its anti-apoptotic effect, could have a novel role in the early progression to malignancy by interfering with PML/p53 function, thereby blocking the senescence program, a critical barrier against cell transformation. 相似文献
9.
The role of p300 in DNA damage response is unclear. To understand how ATM-dependent phosphorylation of p300 affects its function in response to DNA damage, we present evidence that S106 of p300, which is phosphorylated by ATM, regulates stability of NBS1 and recruitment into damaged DNA, possibly leading to regulation of DNA repair. Non-phosphorylatable p300 (S106A) destabilized NBS1 and decreased NBS1–p300 interaction. The recruitment of NBS1 into damaged DNA was impaired in the presence of S106A. Also, a dominant negative p300 lacking enzymatic activity induced destabilization of NBS1, suggesting that its acetyltransferase is required for NBS1 stability. These results indicate that phosphorylation of p300 can regulate NBS1-mediated DNA damage response, and that these events occur in an acetylation-dependent manner.
Structured summary
MINT-8058074, MINT-8058083: p300 (uniprotkb:Q09472) physically interacts (MI:0915) with NBS1 (uniprotkb:O60934) by anti bait coimmunoprecipitation (MI:0006)MINT-8058111: p300 (uniprotkb:Q09472) and NBS1 (uniprotkb:O60934) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-8058657: p300 (uniprotkb:Q09472) physically interacts (MI:0915) with NBS1 (uniprotkb:O60934) by two hybrid (MI:0018)MINT-8058093: p300 (uniprotkb:Q09472) physically interacts (MI:0915) with NBS1 (uniprotkb:O60934) by anti tag coimmunoprecipitation (MI:0007) 相似文献10.
Junfa Yang Yuchen Lu Peipei Yang Qingfeng Chen Yang Wang Qi Ding Tao Xu Xiaofeng Li Changyao Li Cheng Huang Xiaoming Meng Jun Li Lei Zhang Xiao Wang 《Journal of cellular physiology》2019,234(5):7587-7599
Activation of quiescent hepatic stellate cells (HSCs) is the major event in liver fibrosis, along with enhancement of cell proliferation and overproduction of extracellular matrix. Recent findings suggest that senescence of activated HSCs might limit the development of liver fibrosis. The p53, a guardian of the genome is associated with liver fibrosis, has been shown to regulate HSCs senescence. In this study, we report that microRNA-145 (miR-145) and p53 were downregulated in vivo and in vitro, concomitant with the enhanced expression of zinc finger E-box binding homeobox 2 (ZEB2). In addition, overexpression of miR-145 and p53 led to upregulation of the number of senescence-associated β-galactosidase-positive HSCs and the expression of senescence markers p16 and p21, along with the reduced abundance of HSC activation markers α-smooth muscle actin and type I collagen in activated HSCs. Furthermore, silencing of ZEB2 promoted senescence of activated HSCs. Moreover, we also demonstrated that miR-145 specifically targeted the 3′-untranslated regions of ZEB2. In vitro promoter regulation studies show that ZEB2 could bind to the E-box of the p53 promoter as well as inhibit its promoter activity and thus suppress the expression of p53, which in turn repressed activated HSCs senescence. Taken together, our results describe a novel miR-145-ZEB2-p53 regulatory line might participate in the senescence of activated HSCs and might carry potential therapeutic targets for restraining liver fibrosis. 相似文献
11.
Jinpeng He Xiu Feng Junrui Hua Li Wei Zhiwei Lu Wenjun Wei 《Cell cycle (Georgetown, Tex.)》2017,16(20):1943-1953
microRNAs (miRNAs) play a crucial role in mediation of the cellular sensitivity to ionizing radiation (IR). Previous studies revealed that miR-300 was involved in the cellular response to IR or chemotherapy drug. However, whether miR-300 could regulate the DNA damage responses induced by extrinsic genotoxic stress in human lung cancer and the underlying mechanism remain unknown. In this study, the expression of miR-300 was examined in lung cancer cells treated with IR, and the effects of miR-300 on DNA damage repair, cell cycle arrest, apoptosis and senescence induced by IR were investigated. It was found that IR induced upregulation of endogenous miR-300, and ectopic expression of miR-300 by transfected with miR-300 mimics not only greatly enhanced the cellular DNA damage repair ability but also substantially abrogated the G2 cell cycle arrest and apoptosis induced by IR. Bioinformatic analysis predicted that p53 and apaf1 were potential targets of miR-300, and the luciferase reporter assay showed that miR-300 significantly suppressed the luciferase activity through binding to the 3′-UTR of p53 or apaf1 mRNA. In addition, overexpression of miR-300 significantly reduced p53/apaf1 and/or IR-induced p53/apaf1 protein expression levels. Flow cytomertry analysis and colony formation assay showed that miR-300 desensitized lung cancer cells to IR by suppressing p53-dependent G2 cell cycle arrest, apoptosis and senescence. These data demonstrate that miR-300 regulates the cellular sensitivity to IR through targeting p53 and apaf1 in lung cancer cells. 相似文献
12.
Shun Xu Weijia Wu Haijiao Huang Ruxiao Huang Luoyijun Xie Ailing Su Shuang Liu Ruinian Zheng Yuan Yuan Hui‐ling Zheng Xuerong Sun Xing‐dong Xiong Xinguang Liu 《Aging cell》2019,18(3)
Aging is a multifactorial process characterized by the progressive deterioration of physiological functions. Among the multiple molecular mechanisms, microRNAs (miRNAs) have increasingly been implicated in the regulation of Aging process. However, the contribution of miRNAs to physiological Aging and the underlying mechanisms remain elusive. We herein performed high‐throughput analysis using miRNA and mRNA microarray in the physiological Aging mouse, attempted to deepen into the understanding of the effects of miRNAs on Aging process at the “network” level. The data showed that various p53 responsive miRNAs, including miR‐124, miR‐34a and miR‐29a/b/c, were up‐regulated in Aging mouse compared with that in Young mouse. Further investigation unraveled that similar as miR‐34a and miR‐29, miR‐124 significantly promoted cellular senescence. As expected, mRNA microarray and gene co‐expression network analysis unveiled that the most down‐regulated mRNAs were enriched in the regulatory pathways of cell proliferation. Fascinatingly, among these down‐regulated mRNAs, Ccna2 stood out as a common target of several p53 responsive miRNAs (miR‐124 and miR‐29), which functioned as the antagonist of p21 in cell cycle regulation. Silencing of Ccna2 remarkably triggered the cellular senescence, while Ccna2 overexpression delayed cellular senescence and significantly reversed the senescence‐induction effect of miR‐124 and miR‐29. Moreover, these p53 responsive miRNAs were significantly up‐regulated during the senescence process of p21‐deficient cells; overexpression of p53 responsive miRNAs or knockdown of Ccna2 evidently accelerated the cellular senescence in the absence of p21. Taken together, our data suggested that the p53/miRNAs/Ccna2 pathway might serve as a novel senescence modulator independent of p53/p21 pathway. 相似文献
13.
Serpine 1 induces alveolar type II cell senescence through activating p53‐p21‐Rb pathway in fibrotic lung disease 下载免费PDF全文
Chunsun Jiang Gang Liu Tracy Luckhardt Veena Antony Yong Zhou A. Brent Carter Victor J. Thannickal Rui‐Ming Liu 《Aging cell》2017,16(5):1114-1124
Senescence of alveolar type 2 (ATII) cells, progenitors of the alveolar epithelium, is implicated in the pathogeneses of idiopathic pulmonary fibrosis (IPF), an aging‐related progressive fatal lung disorder with unknown etiology. The mechanism underlying ATII cell senescence in fibrotic lung diseases, however, remains poorly understood. In this study, we report that ATII cells in IPF lungs express higher levels of serpine 1, also known as plasminogen activator inhibitor 1 (PAI‐1), and cell senescence markers p21 and p16, compared to ATII cells in control lungs. Silencing PAI‐1 or inhibition of PAI‐1 activity in cultured rat ATII (L2) cells leads to decreases in p53 serine 18 phosphorylation (p53S18P), p53 and p21 protein expressions; an increase in retinoblastoma protein phosphorylation (ppRb); and a reduction in the sensitivity to bleomycin‐ and doxorubicin‐induced senescence. Silencing p53, on the other hand, abrogates PAI‐1 protein‐stimulated p21 expression and cell senescence. In vivo studies, using ATII cell‐specific PAI‐1 conditional knockout mouse model generated recently in this laboratory, further support the role of PAI‐1 in the activation of p53‐p21‐Rb cell cycle repression pathway, ATII cell senescence, and lung fibrosis induced by bleomycin. This study reveals a novel function of PAI‐1 in regulation of cell cycle and suggests that elevation of PAI‐1 contributes importantly to ATII cell senescence in fibrotic lung diseases. 相似文献
14.
15.
Qilan Guo Minghua Chen Qingduo Chen Guitao Xiao Zhixin Chen Xiaozhong Wang Yuehong Huang 《Experimental biology and medicine (Maywood, N.J.)》2021,246(4):447
Activated hepatic stellate cells are reported to play a significant role in liver fibrogenesis. Beside the phenotype reversion and apoptosis of activated hepatic stellate cells, the senescence of activated hepatic stellate cells limits liver fibrosis. Our previous researches have demonstrated that interleukin-10 could promote hepatic stellate cells senescence via p53 signaling pathway in vitro. However, the relationship between expression of p53 and senescence of activated hepatic stellate cells induced by interleukin-10 in fibrotic liver is unclear. The purpose of present study was to explore whether p53 plays a crucial role in the senescence of activated hepatic stellate cells and degradation of collagen mediated by interleukin-10. Hepatic fibrosis animal model was induced by carbon tetrachloride through intraperitoneal injection and transfection of interleukin-10 gene to liver was performed by hydrodynamic-based transfer system. Depletions of p53 in vivo and in vitro were carried out by adenovirus-based short hairpin RNA against p53. Regression of fibrosis was assessed by liver biopsy and collagen staining. Cellular senescence in the liver was observed by senescence-associated beta-galactosidase (SA-β-Gal) staining. Immunohistochemistry, immunofluorescence double staining, and Western blot analysis were used to evaluate the senescent cell and senescence-related protein expression. Our data showed that interleukin-10 gene treatment could lighten hepatic fibrosis induced by carbon tetrachloride and induce the aging of activated hepatic stellate cells accompanied by up-regulating the expression of aging-related proteins. We further demonstrated that depletion of p53 could abrogate up-regulation of interleukin-10 on the expression of senescence-related protein in vivo and vitro. Moreover, p53 knockout in fibrotic mice could block not only the senescence of activated hepatic stellate cells, but also the degradation of fibrosis induced by interleukin-10 gene intervention. Taken together, our results suggested that interleukin-10 gene treatment could attenuate carbon tetrachloride-induced hepatic fibrosis by inducing senescence of activated hepatic stellate cells in vivo, and this induction was closely related to p53 signaling pathway. 相似文献
16.
Xiaofeng Liu Yuqin Tan Chunfeng Zhang Ying Zhang Liangliang Zhang Pengwei Ren Hongkui Deng Jianyuan Luo Yang Ke Xiaojuan Du 《EMBO reports》2016,17(3):349-366
As a genome guardian, p53 maintains genome stability by arresting cells for damage repair or inducing cell apoptosis to eliminate the damaged cells in stress response. Several nucleolar proteins stabilize p53 by interfering Mdm2–p53 interaction upon cellular stress, while other mechanisms by which nucleolar proteins activate p53 remain to be determined. Here, we identify NAT10 as a novel regulator for p53 activation. NAT10 acetylates p53 at K120 and stabilizes p53 by counteracting Mdm2 action. In addition, NAT10 promotes Mdm2 degradation with its intrinsic E3 ligase activity. After DNA damage, NAT10 translocates to nucleoplasm and activates p53‐mediated cell cycle control and apoptosis. Finally, NAT10 inhibits cell proliferation and expression of NAT10 decreases in human colorectal carcinomas. Thus, our data demonstrate that NAT10 plays a critical role in p53 activation via acetylating p53 and counteracting Mdm2 action, providing a novel pathway by which nucleolar protein activates p53 as a cellular stress sensor. 相似文献
17.
18.
组蛋白乙酰化修饰是基因起始转录的关键步骤. p300等组蛋白乙酰转移酶(HATs)催化组蛋白和非组蛋白的乙酰化. HATs具有多种细胞功能,而且乙酰化对底物蛋白的功能改变也具有重要功能. 组蛋白乙酰转移酶p300可乙酰化多种细胞内蛋白,某些病毒蛋白与p300有相互作用并促进病毒复制. 因此, p300是细胞内具有广泛功能的转录激活因子. 组蛋白乙酰转移酶结构域(HAT区)是p300乙酰化酶活性的最小中心功能域,在p300乙酰化底物中具有重要功能. 本文重组表达了对应p300 HAT区的GST-p300 HAT蛋白,对其乙酰化酶的活性进行检测. 结果证实,p300 HAT蛋白在体外可高效乙酰化组蛋白H3. 随后,对体外乙酰化反应的条件进行优化. 总之,本文构建了一种简单高效、非放射性体外乙酰化体系,适用于对潜在底物蛋白的乙酰化水平和机制进行分析,以及乙酰化蛋白的相关功能的研究. 相似文献
19.
Zhenzhen Yang Zhen Xiao Huiming Guo Xianhong Fang Jingnan Liang Jiening Zhu Jing Yang Hui Li Rong Pan Shujing Yuan Wenyan Dong Xi‐Long Zheng Shulin Wu Zhixin Shan 《Journal of cellular and molecular medicine》2019,23(5):3246-3256
Atrial fibrillation (AF) is the most common type of arrhythmia in cardiovascular diseases. Atrial fibrosis is an important pathophysiological contributor to AF. This study aimed to investigate the role of the clustered miR‐23b‐3p and miR‐27b‐3p in atrial fibrosis. Human atrial fibroblasts (HAFs) were isolated from atrial appendage tissue of patients with sinus rhythm. A cell model of atrial fibrosis was achieved in Ang‐II‐induced HAFs. Cell proliferation and migration were detected. We found that miR‐23b‐3p and miR‐27b‐3p were markedly increased in atrial appendage tissues of AF patients and in Ang‐II‐treated HAFs. Overexpression of miR‐23b‐3p and miR‐27b‐3p enhanced the expression of collagen, type I, alpha 1 (COL1A1), COL3A1 and ACTA2 in HAFs without significant effects on their proliferation and migration. Luciferase assay showed that miR‐23b‐3p and miR‐27b‐3p targeted two different sites in 3?‐UTR of transforming growth factor (TGF)‐β1 receptor 3 (TGFBR3) respectively. Consistently, TGFBR3 siRNA could increase fibrosis‐related genes expression, along with the Smad1 inactivation and Smad3 activation in HAFs. Additionally, overexpression of TGFBR3 could alleviate the increase of COL1A1, COL3A1 and ACTA2 in HAFs after transfection with miR‐23b‐3p and miR‐27b‐3p respectively. Moreover, Smad3 was activated in HAFs in response to Ang‐II treatment and inactivation of Smad3 attenuated up‐regulation of miR‐23b‐3p and miR‐27b‐3p in Ang‐II‐treated HAFs. Taken together, these results suggest that the clustered miR‐23b‐3p and miR‐27b‐3p consistently promote atrial fibrosis by targeting TGFBR3 to activate Smad3 signalling in HAFs, suggesting that miR‐23b‐3p and miR‐27b‐3p are potential therapeutic targets for atrial fibrosis. 相似文献