首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cause-specific cumulative incidence function (CIF) is the probability of failure from a specific cause as a function of time. In randomized trials, a difference of cause-specific CIFs (treatment minus control) represents a treatment effect. Cause-specific CIF in each intervention arm can be estimated based on the usual non-parametric Aalen–Johansen estimator which generalizes the Kaplan–Meier estimator of CIF in the presence of competing risks. Under random censoring, asymptotically valid Wald-type confidence intervals (CIs) for a difference of cause-specific CIFs at a specific time point can be constructed using one of the published variance estimators. Unfortunately, these intervals can suffer from substantial under-coverage when the outcome of interest is a rare event, as may be the case for example in the analysis of uncommon adverse events. We propose two new approximate interval estimators for a difference of cause-specific CIFs estimated in the presence of competing risks and random censoring. Theoretical analysis and simulations indicate that the new interval estimators are superior to the Wald CIs in the sense of avoiding substantial under-coverage with rare events, while being equivalent to the Wald CIs asymptotically. In the absence of censoring, one of the two proposed interval estimators reduces to the well-known Agresti–Caffo CI for a difference of two binomial parameters. The new methods can be easily implemented with any software package producing point and variance estimates for the Aalen–Johansen estimator, as illustrated in a real data example.  相似文献   

2.
Zheng Y  Cai T  Jin Y  Feng Z 《Biometrics》2012,68(2):388-396
To develop more targeted intervention strategies, an important research goal is to identify markers predictive of clinical events. A crucial step toward this goal is to characterize the clinical performance of a marker for predicting different types of events. In this article, we present statistical methods for evaluating the performance of a prognostic marker in predicting multiple competing events. To capture the potential time-varying predictive performance of the marker and incorporate competing risks, we define time- and cause-specific accuracy summaries by stratifying cases based on causes of failure. Such definition would allow one to evaluate the predictive accuracy of a marker for each type of event and compare its predictiveness across event types. Extending the nonparametric crude cause-specific receiver operating characteristics curve estimators by Saha and Heagerty (2010), we develop inference procedures for a range of cause-specific accuracy summaries. To estimate the accuracy measures and assess how covariates may affect the accuracy of a marker under the competing risk setting, we consider two forms of semiparametric models through the cause-specific hazard framework. These approaches enable a flexible modeling of the relationships between the marker and failure times for each cause, while efficiently accommodating additional covariates. We investigate the asymptotic property of the proposed accuracy estimators and demonstrate the finite sample performance of these estimators through simulation studies. The proposed procedures are illustrated with data from a prostate cancer prognostic study.  相似文献   

3.
Semiparametric models for cumulative incidence functions   总被引:1,自引:0,他引:1  
Bryant J  Dignam JJ 《Biometrics》2004,60(1):182-190
In analyses of time-to-failure data with competing risks, cumulative incidence functions may be used to estimate the time-dependent cumulative probability of failure due to specific causes. These functions are commonly estimated using nonparametric methods, but in cases where events due to the cause of primary interest are infrequent relative to other modes of failure, nonparametric methods may result in rather imprecise estimates for the corresponding subdistribution. In such cases, it may be possible to model the cause-specific hazard of primary interest parametrically, while accounting for the other modes of failure using nonparametric estimators. The cumulative incidence estimators so obtained are simple to compute and are considerably more efficient than the usual nonparametric estimator, particularly with regard to interpolation of cumulative incidence at early or intermediate time points within the range of data used to fit the function. More surprisingly, they are often nearly as efficient as fully parametric estimators. We illustrate the utility of this approach in the analysis of patients treated for early stage breast cancer.  相似文献   

4.
We propose a method to estimate the regression coefficients in a competing risks model where the cause-specific hazard for the cause of interest is related to covariates through a proportional hazards relationship and when cause of failure is missing for some individuals. We use multiple imputation procedures to impute missing cause of failure, where the probability that a missing cause is the cause of interest may depend on auxiliary covariates, and combine the maximum partial likelihood estimators computed from several imputed data sets into an estimator that is consistent and asymptotically normal. A consistent estimator for the asymptotic variance is also derived. Simulation results suggest the relevance of the theory in finite samples. Results are also illustrated with data from a breast cancer study.  相似文献   

5.
There is considerable debate regarding the choice of test for treatment difference in a randomized clinical trial in the presence of competing risks. This question arose in the study of standard and new antiepileptic drugs (SANAD) trial comparing new and standard antiepileptic drugs. This paper provides simulation results for the log-rank test comparing cause-specific hazard rates and Gray's test comparing cause-specific cumulative incidence curves. To inform the analysis of the SANAD trial, competing-risks settings were considered where both events are of interest, events may be negatively correlated, and the degree of correlation may differ in the 2 treatment groups. In settings where there are effects in opposite directions for the 2 event types, a likely situation for the SANAD trial, Gray's test has greater power to detect treatment differences than log-rank analysis. For the epilepsy application, conclusions were qualitatively similar for both log-rank and Gray's tests.  相似文献   

6.
In observational cohort studies with complex sampling schemes, truncation arises when the time to event of interest is observed only when it falls below or exceeds another random time, that is, the truncation time. In more complex settings, observation may require a particular ordering of event times; we refer to this as sequential truncation. Estimators of the event time distribution have been developed for simple left-truncated or right-truncated data. However, these estimators may be inconsistent under sequential truncation. We propose nonparametric and semiparametric maximum likelihood estimators for the distribution of the event time of interest in the presence of sequential truncation, under two truncation models. We show the equivalence of an inverse probability weighted estimator and a product limit estimator under one of these models. We study the large sample properties of the proposed estimators and derive their asymptotic variance estimators. We evaluate the proposed methods through simulation studies and apply the methods to an Alzheimer's disease study. We have developed an R package, seqTrun , for implementation of our method.  相似文献   

7.
This commentary takes up Pearl's welcome challenge to clearly articulate the scientific value of principal stratification estimands that we and colleagues have investigated, in the area of randomized placebo-controlled preventive vaccine efficacy trials, especially trials of HIV vaccines. After briefly arguing that certain principal stratification estimands for studying vaccine effects on post-infection outcomes are of genuine scientific interest, the bulk of our commentary argues that the "causal effect predictiveness" (CEP) principal stratification estimand for evaluating immune biomarkers as surrogate endpoints is not of ultimate scientific interest, because it evaluates surrogacy restricted to the setting of a particular vaccine efficacy trial, but is nevertheless useful for guiding the selection of primary immune biomarker endpoints in Phase I/II vaccine trials and for facilitating assessment of transportability/bridging surrogacy.  相似文献   

8.
Many scientific problems require that treatment comparisons be adjusted for posttreatment variables, but the estimands underlying standard methods are not causal effects. To address this deficiency, we propose a general framework for comparing treatments adjusting for posttreatment variables that yields principal effects based on principal stratification. Principal stratification with respect to a posttreatment variable is a cross-classification of subjects defined by the joint potential values of that posttreatment variable tinder each of the treatments being compared. Principal effects are causal effects within a principal stratum. The key property of principal strata is that they are not affected by treatment assignment and therefore can be used just as any pretreatment covariate. such as age category. As a result, the central property of our principal effects is that they are always causal effects and do not suffer from the complications of standard posttreatment-adjusted estimands. We discuss briefly that such principal causal effects are the link between three recent applications with adjustment for posttreatment variables: (i) treatment noncompliance, (ii) missing outcomes (dropout) following treatment noncompliance. and (iii) censoring by death. We then attack the problem of surrogate or biomarker endpoints, where we show, using principal causal effects, that all current definitions of surrogacy, even when perfectly true, do not generally have the desired interpretation as causal effects of treatment on outcome. We go on to forrmulate estimands based on principal stratification and principal causal effects and show their superiority.  相似文献   

9.
The Fine–Gray proportional subdistribution hazards model has been puzzling many people since its introduction. The main reason for the uneasy feeling is that the approach considers individuals still at risk for an event of cause 1 after they fell victim to the competing risk of cause 2. The subdistribution hazard and the extended risk sets, where subjects who failed of the competing risk remain in the risk set, are generally perceived as unnatural . One could say it is somewhat of a riddle why the Fine–Gray approach yields valid inference. To take away these uneasy feelings, we explore the link between the Fine–Gray and cause-specific approaches in more detail. We introduce the reduction factor as representing the proportion of subjects in the Fine–Gray risk set that has not yet experienced a competing event. In the presence of covariates, the dependence of the reduction factor on a covariate gives information on how the effect of the covariate on the cause-specific hazard and the subdistribution hazard relate. We discuss estimation and modeling of the reduction factor, and show how they can be used in various ways to estimate cumulative incidences, given the covariates. Methods are illustrated on data of the European Society for Blood and Marrow Transplantation.  相似文献   

10.
Most research on the study of associations among paired failuretimes has either assumed time invariance or been based on complexmeasures or estimators. Little has accommodated competing risks.This paper targets the conditional cause-specific hazard ratio,henceforth called the cause-specific cross ratio, a recent modificationof the conditional hazard ratio designed to accommodate competingrisks data. Estimation is accomplished by an intuitive, nonparametricmethod that localizes Kendall's tau. Time variance is accommodatedthrough a partitioning of space into ‘bins’ betweenwhich the strength of association may differ. Inferential proceduresare developed, small-sample performance is evaluated, and themethods are applied to the investigation of familial associationin dementia onset.  相似文献   

11.
In many clinical studies that involve follow-up, it is common to observe one or more sequences of longitudinal measurements, as well as one or more time to event outcomes. A competing risks situation arises when the probability of occurrence of one event is altered/hindered by another time to event. Recently, there has been much attention paid to the joint analysis of a single longitudinal response and a single time to event outcome, when the missing data mechanism in the longitudinal process is non-ignorable. We, in this paper, propose an extension where multiple longitudinal responses are jointly modeled with competing risks (multiple time to events). Our shared parameter joint model consists of a system of multiphase non-linear mixed effects sub-models for the multiple longitudinal responses, and a system of cause-specific non-proportional hazards frailty sub-models for competing risks, with associations among multiple longitudinal responses and competing risks modeled using latent parameters. The joint model is applied to a data set of patients who are on mechanical circulatory support and are awaiting heart transplant, using readily available software. While on the mechanical circulatory support, patient liver and renal functions may worsen and these in turn may influence one of the two possible competing outcomes: (i) death before transplant; (ii) transplant. In one application, we propose a system of multiphase cause-specific non-proportional hazard sub-model where frailty can be time varying. Performance under different scenarios was assessed using simulation studies. By using the proposed joint modeling of the multiphase sub-models, one can identify: (i) non-linear trends in multiple longitudinal outcomes; (ii) time-varying hazards and cumulative incidence functions of the competing risks; (iii) identify risk factors for the both types of outcomes, where the effect may or may not change with time; and (iv) assess the association between multiple longitudinal and competing risks outcomes, where the association may or may not change with time.  相似文献   

12.
Lu Mao 《Biometrics》2023,79(3):1749-1760
Measuring the treatment effect on recurrent events like hospitalization in the presence of death has long challenged statisticians and clinicians alike. Traditional inference on the cumulative frequency unjustly penalizes survivorship as longer survivors also tend to experience more adverse events. Expanding a recently suggested idea of the “while-alive” event rate, we consider a general class of such estimands that adjust for the length of survival without losing causal interpretation. Given a user-specified loss function that allows for arbitrary weighting, we define as estimand the average loss experienced per unit time alive within a target period and use the ratio of this loss rate to measure the effect size. Scaling the loss rate by the width of the corresponding time window gives us an alternative, and sometimes more photogenic, way of showing the data. To make inferences, we construct a nonparametric estimator for the loss rate through the cumulative loss and the restricted mean survival time and derive its influence function in closed form for variance estimation and testing. As simulations and analysis of real data from a heart failure trial both show, the while-alive approach corrects for the false attenuation of treatment effect due to patients living longer under treatment, with increased statistical power as a result. The proposed methods are implemented in the R-package WA , which is publicly available from the Comprehensive R Archive Network (CRAN).  相似文献   

13.
We are interested in the estimation of average treatment effects based on right-censored data of an observational study. We focus on causal inference of differences between t-year absolute event risks in a situation with competing risks. We derive doubly robust estimation equations and implement estimators for the nuisance parameters based on working regression models for the outcome, censoring, and treatment distribution conditional on auxiliary baseline covariates. We use the functional delta method to show that these estimators are regular asymptotically linear estimators and estimate their variances based on estimates of their influence functions. In empirical studies, we assess the robustness of the estimators and the coverage of confidence intervals. The methods are further illustrated using data from a Danish registry study.  相似文献   

14.
Transported mediation effects may contribute to understanding how interventions work differently when applied to new populations. However, we are not aware of any estimators for such effects. Thus, we propose two doubly robust, efficient estimators of transported stochastic (also called randomized interventional) direct and indirect effects. We demonstrate their finite sample properties in a simulation study. We then apply the preferred substitution estimator to longitudinal data from the Moving to Opportunity Study, a large‐scale housing voucher experiment, to transport stochastic indirect effect estimates of voucher receipt in childhood on subsequent risk of mental health or substance use disorder mediated through parental employment across sites, thereby gaining understanding of drivers of the site differences.  相似文献   

15.
Person‐time incidence rates are frequently used in medical research. However, standard estimation theory for this measure of event occurrence is based on the assumption of independent and identically distributed (iid) exponential event times, which implies that the hazard function remains constant over time. Under this assumption and assuming independent censoring, observed person‐time incidence rate is the maximum‐likelihood estimator of the constant hazard, and asymptotic variance of the log rate can be estimated consistently by the inverse of the number of events. However, in many practical applications, the assumption of constant hazard is not very plausible. In the present paper, an average rate parameter is defined as the ratio of expected event count to the expected total time at risk. This rate parameter is equal to the hazard function under constant hazard. For inference about the average rate parameter, an asymptotically robust variance estimator of the log rate is proposed. Given some very general conditions, the robust variance estimator is consistent under arbitrary iid event times, and is also consistent or asymptotically conservative when event times are independent but nonidentically distributed. In contrast, the standard maximum‐likelihood estimator may become anticonservative under nonconstant hazard, producing confidence intervals with less‐than‐nominal asymptotic coverage. These results are derived analytically and illustrated with simulations. The two estimators are also compared in five datasets from oncology studies.  相似文献   

16.
Summary .   We develop methods for competing risks analysis when individual event times are correlated within clusters. Clustering arises naturally in clinical genetic studies and other settings. We develop a nonparametric estimator of cumulative incidence, and obtain robust pointwise standard errors that account for within-cluster correlation. We modify the two-sample Gray and Pepe–Mori tests for correlated competing risks data, and propose a simple two-sample test of the difference in cumulative incidence at a landmark time. In simulation studies, our estimators are asymptotically unbiased, and the modified test statistics control the type I error. The power of the respective two-sample tests is differentially sensitive to the degree of correlation; the optimal test depends on the alternative hypothesis of interest and the within-cluster correlation. For purposes of illustration, we apply our methods to a family-based prospective cohort study of hereditary breast/ovarian cancer families. For women with BRCA1 mutations, we estimate the cumulative incidence of breast cancer in the presence of competing mortality from ovarian cancer, accounting for significant within-family correlation.  相似文献   

17.
Various assumptions have been used in the literature to identify natural direct and indirect effects in mediation analysis. These effects are of interest because they allow for effect decomposition of a total effect into a direct and indirect effect even in the presence of interactions or non-linear models. In this paper, we consider the relation and interpretation of various identification assumptions in terms of causal diagrams interpreted as a set of non-parametric structural equations. We show that for such causal diagrams, two sets of assumptions for identification that have been described in the literature are in fact equivalent in the sense that if either set of assumptions holds for all models inducing a particular causal diagram, then the other set of assumptions will also hold for all models inducing that diagram. We moreover build on prior work concerning a complete graphical identification criterion for covariate adjustment for total effects to provide a complete graphical criterion for using covariate adjustment to identify natural direct and indirect effects. Finally, we show that this criterion is equivalent to the two sets of independence assumptions used previously for mediation analysis.  相似文献   

18.
Nonparametric quantile inference for competing risks has recentlybeen studied by Peng & Fine (2007). Their key result establishesuniform consistency and weak convergence of the inverse of theAalen–Johansen estimator of the cumulative incidence function,using the representation of the cumulative incidence estimatoras a sum of independent and identically distributed random variables.The limit process is of a form similar to that of the standardsurvival result, but with the cause-specific hazard of interestreplacing the all-causes hazard. We show that this fact is nota coincidence, but can be derived from a general Hadamard differentiationresult. We discuss a simplified proof and extensions of theapproach to more complex multistate models. As a further consequence,we find that the bootstrap works.  相似文献   

19.
In this article we construct and study estimators of the causal effect of a time-dependent treatment on survival in longitudinal studies. We employ a particular marginal structural model (MSM), proposed by Robins (2000), and follow a general methodology for constructing estimating functions in censored data models. The inverse probability of treatment weighted (IPTW) estimator of Robins et al. (2000) is used as an initial estimator and forms the basis for an improved, one-step estimator that is consistent and asymptotically linear when the treatment mechanism is consistently estimated. We extend these methods to handle informative censoring. The proposed methodology is employed to estimate the causal effect of exercise on mortality in a longitudinal study of seniors in Sonoma County. A simulation study demonstrates the bias of naive estimators in the presence of time-dependent confounders and also shows the efficiency gain of the IPTW estimator, even in the absence such confounding. The efficiency gain of the improved, one-step estimator is demonstrated through simulation.  相似文献   

20.
Commonly used semiparametric estimators of causal effects specify parametric models for the propensity score (PS) and the conditional outcome. An example is an augmented inverse probability weighting (IPW) estimator, frequently referred to as a doubly robust estimator, because it is consistent if at least one of the two models is correctly specified. However, in many observational studies, the role of the parametric models is often not to provide a representation of the data-generating process but rather to facilitate the adjustment for confounding, making the assumption of at least one true model unlikely to hold. In this paper, we propose a crude analytical approach to study the large-sample bias of estimators when the models are assumed to be approximations of the data-generating process, namely, when all models are misspecified. We apply our approach to three prototypical estimators of the average causal effect, two IPW estimators, using a misspecified PS model, and an augmented IPW (AIPW) estimator, using misspecified models for the outcome regression (OR) and the PS. For the two IPW estimators, we show that normalization, in addition to having a smaller variance, also offers some protection against bias due to model misspecification. To analyze the question of when the use of two misspecified models is better than one we derive necessary and sufficient conditions for when the AIPW estimator has a smaller bias than a simple IPW estimator and when it has a smaller bias than an IPW estimator with normalized weights. If the misspecification of the outcome model is moderate, the comparisons of the biases of the IPW and AIPW estimators show that the AIPW estimator has a smaller bias than the IPW estimators. However, all biases include a scaling with the PS-model error and we suggest caution in modeling the PS whenever such a model is involved. For numerical and finite sample illustrations, we include three simulation studies and corresponding approximations of the large-sample biases. In a dataset from the National Health and Nutrition Examination Survey, we estimate the effect of smoking on blood lead levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号