首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alzheimer’s disease (AD) is the prevalent cause of dementia in the ageing world population. Apolipoprotein E4 (ApoE4) allele is the key genetic risk factor for AD, although the mechanisms linking ApoE4 with neurocognitive impairments and aberrant metabolism remains to be fully characterised. We discovered a significant increase in the ApoE4 content of serum exosomes in old healthy subjects and AD patients carrying ApoE4 allele as compared with healthy adults. Elevated exosomal ApoE4 demonstrated significant inverse correlation with serum level of thyroid hormones and cognitive function. We analysed effects of ApoE4-containing peripheral exosomes on neural cells and neurological outputs in aged or thyroidectomised young mice. Ageing-associated hypothyroidism as well as acute thyroidectomy augmented transport of liver-derived ApoE4 reach exosomes into the brain, where ApoE4 activated nucleotide-binding oligomerisation domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome by increasing cholesterol level in neural cells. This, in turn, affected cognition, locomotion and mood. Our study reveals pathological potential of exosomes-mediated relocation of ApoE4 from the periphery to the brain, this process can represent potential therapeutic target.Subject terms: Cognitive neuroscience, Alzheimer''s disease, Cellular neuroscience  相似文献   

2.
Cellular senescence is characterized by an irreversible cell cycle arrest and a pro‐inflammatory senescence‐associated secretory phenotype (SASP), which is a major contributor to aging and age‐related diseases. Clearance of senescent cells has been shown to improve brain function in mouse models of neurodegenerative diseases. However, it is still unknown whether senescent cell clearance alleviates cognitive dysfunction during the aging process. To investigate this, we first conducted single‐nuclei and single‐cell RNA‐seq in the hippocampus from young and aged mice. We observed an age‐dependent increase in p16Ink4a senescent cells, which was more pronounced in microglia and oligodendrocyte progenitor cells and characterized by a SASP. We then aged INKATTAC mice, in which p16Ink4a‐positive senescent cells can be genetically eliminated upon treatment with the drug AP20187 and treated them either with AP20187 or with the senolytic cocktail Dasatinib and Quercetin. We observed that both strategies resulted in a decrease in p16Ink4a exclusively in the microglial population, resulting in reduced microglial activation and reduced expression of SASP factors. Importantly, both approaches significantly improved cognitive function in aged mice. Our data provide proof‐of‐concept for senolytic interventions'' being a potential therapeutic avenue for alleviating age‐associated cognitive impairment.  相似文献   

3.
Gut microbiota can influence the aging process and may modulate aging‐related changes in cognitive function. Trimethylamine‐N‐oxide (TMAO), a metabolite of intestinal flora, has been shown to be closely associated with cardiovascular disease and other diseases. However, the relationship between TMAO and aging, especially brain aging, has not been fully elucidated. To explore the relationship between TMAO and brain aging, we analysed the plasma levels of TMAO in both humans and mice and administered exogenous TMAO to 24‐week‐old senescence‐accelerated prone mouse strain 8 (SAMP8) and age‐matched senescence‐accelerated mouse resistant 1 (SAMR1) mice for 16 weeks. We found that the plasma levels of TMAO increased in both the elderly and the aged mice. Compared with SAMR1‐control mice, SAMP8‐control mice exhibited a brain aging phenotype characterized by more senescent cells in the hippocampal CA3 region and cognitive dysfunction. Surprisingly, TMAO treatment increased the number of senescent cells, which were primarily neurons, and enhanced the mitochondrial impairments and superoxide production. Moreover, we observed that TMAO treatment increased synaptic damage and reduced the expression levels of synaptic plasticity‐related proteins by inhibiting the mTOR signalling pathway, which induces and aggravates aging‐related cognitive dysfunction in SAMR1 and SAMP8 mice, respectively. Our findings suggested that TMAO could induce brain aging and age‐related cognitive dysfunction in SAMR1 mice and aggravate the cerebral aging process of SAMP8 mice, which might provide new insight into the effects of intestinal microbiota on the brain aging process and help to delay senescence by regulating intestinal flora metabolites.  相似文献   

4.
Inflammatory protein biomarkers induced by immune responses have been associated with cognitive decline and the pathogenesis of Alzheimer's disease (AD). Here, we investigate associations between a panel of inflammatory biomarkers and cognitive function and incident dementia outcomes in the well-characterized Framingham Heart Study Offspring cohort. Participants aged ≥40 years and dementia-free at Exam 7 who had a stored plasma sample were selected for profiling using the OLINK proteomics inflammation panel. Cross-sectional associations of the biomarkers with cognitive domain scores (N = 708, 53% female, 22% apolipoprotein E (APOE) ε4 carriers, 15% APOE ε2 carriers, mean age 61) and incident all-cause and AD dementia during up to 20 years of follow-up were tested. APOE genotype-stratified analyses were performed to explore effect modification. Higher levels of 12 and 3 proteins were associated with worse executive function and language domain factor scores, respectively. Several proteins were associated with more than one cognitive domain, including IL10, LIF-R, TWEAK, CCL19, IL-17C, MCP-4, and TGF-alpha. Stratified analyses suggested differential effects between APOE ε2 and ε4 carriers: most ε4 carrier associations were with executive function and memory domains, whereas most ε2 associations were with the visuospatial domain. Higher levels of TNFB and CDCP1 were associated with higher risks of incident all-cause and AD dementia. Our study found that TWEAK concentration was associated both with cognitive function and risks for AD dementia. The association of these inflammatory biomarkers with cognitive function and incident dementia may contribute to the discovery of therapeutic interventions for the prevention and treatment of cognitive decline.  相似文献   

5.
Apolipoprotein E (ApoE) is an abundant plasma protein that interacts with low density lipoprotein receptors and other proteins, participating in the transport of cholesterol and lipids. Research has revealed many other roles for this multifunctional protein. ApoE is polymorphic and exists in three major isoforms: ApoE2, ApoE3 (the most common isoform) and ApoE4, which differ by only one amino acid, at positions 112 and 158. The altered binding to lipids and receptors by ApoE isoforms E2 and E4 results in an elevated risk for neurological, cerebrovascular and cardiovascular pathologies. Most notably, ApoE4 is associated with an elevated risk (relative to E3) for Alzheimer’s disease. The application of mass spectrometry for genotyping and also direct measurement of ApoE protein isoforms is a recent development and is well suited to high-throughput applications. The precise quantification of protein isoforms will allow better characterization of effects resulting from heterozygous APOE genotypes.  相似文献   

6.
7.
High levels of β-amyloid (Aβ) in the brain and carriage of the APOE ε4 allele have each been linked to cognitive impairment in cognitively normal (CN) older adults. However, the relationship between these two biomarkers and cognitive decline is unclear. The aim of this study was to investigate the relationship between cerebral Aβ level, APOE ε4 carrier status, and cognitive decline over 18 months, in 317 cognitively healthy (CN) older adults (47.6% males, 52.4% females) aged between 60 and 89 years (Mean = 69.9, SD = 6.8). Cognition was assessed using the Cogstate Brief Battery (CBB) and the California Verbal Learning Test, Second Edition (CVLT-II). Planned comparisons indicated that CN older adults with high Aβ who were also APOE ε4 carriers demonstrated the most pronounced decline in learning and working memory. In CN older adults who were APOE ε4 non-carriers, high Aβ was unrelated to cognitive decline in learning and working memory. Carriage of APOE ε4 in CN older adults with low Aβ was associated with a significantly increased rate of decline in learning and unexpectedly, improved cognitive performance on measures of verbal episodic memory over 18 months. These results suggest that Aβ and APOE ε4 interact to increase the rate of cognitive decline in CN older adults and provide further support for the use of Aβ and APOE ε4 as biomarkers of early Alzheimer’s disease.  相似文献   

8.
During aging, some individuals are resilient to the decline of cognitive functions whereas others are vulnerable. These inter‐individual differences in memory abilities have been associated with differences in the rate of hippocampal neurogenesis measured in elderlies. Whether the maintenance of the functionality of neurons generated throughout adult life is linked to resilience to cognitive aging remains completely unexplored. Using the immediate early gene Zif268, we analyzed the activation of dentate granule neurons born in adult (3‐month‐old), middle‐aged (12‐month‐old), or senescent (18‐month‐old) rats (n = 96) in response to learning when animals reached 21 months of age. The activation of neurons born during the developmental period was also examined. We show that adult‐born neurons can survive up to 19 months and that neurons generated 4, 10, or 19 months before learning, but not developmentally born neurons, are activated in senescent rats with good learning abilities. In contrast, aged rats with bad learning abilities do not exhibit activity‐dependent regulation of newborn cells, whatever their birthdate. In conclusion, we propose that resilience to cognitive aging is associated with responsiveness of neurons born during adult life. These data add to our current knowledge by showing that the aging of memory abilities stems not only from the number but also from the responsiveness of adult‐born neurons.  相似文献   

9.

Background

Apolipoprotein E (ApoE) typing is considered important because of the association between ApoE and Alzheimer’s disease and familial dyslipidemia and is currently performed by genetic testing (APOE genotyping). ApoE levels in plasma and serum are clinically determined by immunoassay.

Methods

Combining an ApoE immunoassay reagent with proteomic analysis using an Orbitrap mass spectrometer, we attempted to resequence ApoE from trace amounts of serum for typing (serotyping). Most (24 of 33) ApoE mutant proteins registered to date with Online Mendelian Inheritance in Man, such as ApoE2 and ApoE4, involve lysine and arginine mutations. Digestion of mutant ApoE with trypsin will thus result in fragments that differ substantially from wild-type ApoE3 in terms of mass, making serotyping ideally suited to mass spectrometry analysis.

Results

The mean coverage of the amino acid sequence of full-length ApoE was 91.6% in the protein resequence. Residues 112 and 158 (which are mutated in ApoE2 and ApoE4) were covered in all samples, and the protein sequences were used for serotyping. Serotypes including all heterozygous combinations (ApoE2/E3, E2/E4, E3/E4) corresponded exactly to the APOE genotyping results in each of the subjects.

Conclusion

Our novel ApoE serotyping method with protein resequencing requires no synthesis of stable isotope-labeled peptides or genome analysis. The method can use residual blood from samples collected for routine clinical tests, thus enabling retrospective studies with preserved body fluids. The test could be applied to samples from subjects whose DNA is unavailable. In future studies, we hope to demonstrate the capability of our method to detect rare ApoE mutations.  相似文献   

10.
Age is the main risk factor for the development of neurodegenerative diseases. In the aged brain, axonal degeneration is an early pathological event, preceding neuronal dysfunction, and cognitive disabilities in humans, primates, rodents, and invertebrates. Necroptosis mediates degeneration of injured axons, but whether necroptosis triggers neurodegeneration and cognitive impairment along aging is unknown. Here, we show that the loss of the necroptotic effector Mlkl was sufficient to delay age-associated axonal degeneration and neuroinflammation, protecting against decreased synaptic transmission and memory decline in aged mice. Moreover, short-term pharmacologic inhibition of necroptosis targeting RIPK3 in aged mice, reverted structural and functional hippocampal impairment, both at the electrophysiological and behavioral level. Finally, a quantitative proteomic analysis revealed that necroptosis inhibition leads to an overall improvement of the aged hippocampal proteome, including a subclass of molecular biofunctions associated with brain rejuvenation, such as long-term potentiation and synaptic plasticity. Our results demonstrate that necroptosis contributes to age-dependent brain degeneration, disturbing hippocampal neuronal connectivity, and cognitive function. Therefore, necroptosis inhibition constitutes a potential geroprotective strategy to treat age-related disabilities associated with memory impairment and cognitive decline.  相似文献   

11.
The ε4 allele of apolipoprotein E (apoE4) is the predominant genetic risk factor for late‐onset Alzheimer's disease (AD) and is also implicated in cognitive deficits associated with normal aging. The biological mechanisms by which APOE genotype affects cognitive processes or AD pathogenesis remain unclear, but interactions of apoE with amyloid β peptide (Aβ) are thought to play an important role in mediating apoE's isoform‐specific effects on brain function. Here, we investigated the potential isoform‐dependent effects of apoE on behavioral and cognitive performance in human apoE3 and apoE4 targeted‐replacement (TR) mice that also overexpress the human amyloid precursor protein (APP). Beginning at 6–7 months of age, female APP‐Yac/apoE3‐TR (‘poE3’) and APP‐Yac/apoE4‐TR (‘poE4’) mice were tested on a battery of tests to evaluate basic sensorimotor functioning, spatial working memory, spatial recognition, episodic‐like memory and attentional processing. Compared with apoE3 mice, a generalized reduction in locomotor activity was observed in apoE4 mice. Moderate, but significant, cognitive impairments were also detected in apoE4 mice in the novel object‐location preference task, the contextual fear conditioning test, and a two‐choice visual discrimination/detection test, however spontaneous alternation performance in the Y‐maze was spared. These results offer additional support for the negative impact of apoE4 on both memory and attention and further suggest that APP‐Yac/apoE‐TR mice provide a novel and useful model for investigating the role of apoE in mediating susceptibility to cognitive decline.  相似文献   

12.
Nucleotide-binding domain, leucine-rich-repeat–containing proteins (NLRs) are intracellular innate immune sensors of pathogen-associated and damage-associated molecular patterns. NLRs regulate diverse biologic processes such as inflammatory responses, cell proliferation and death, and gut microbiota to attenuate tumorigenesis. In a recent publication in Nature, we identified NLRC3 as a negative regulator of PI3K–mTOR signaling and characterized its potential tumor suppressor function. Enterocytes lacking NLRC3 cannot control cellular proliferation because they are unable to suppress activation of PI3K–mTOR signaling pathways. In this Extra-View, we explore possible mechanisms through which NLRC3 regulates cellular proliferation and cell death. Besides interacting with PI3K, NLRC3 associates with TRAF6 and mTOR, confirming our recent finding that NLRC3 negatively regulates the PI3K–mTOR axis. Herein, we show that NLRC3 suppresses c-Myc expression and activation of PI3K–AKT targets FoxO3a and FoxO1 in the colon of Nlrc3?/? mice, suggesting that additional signaling pathways contribute to increased cellular proliferation. Moreover, NLRC3 suppresses colorectal tumorigenesis by promoting cellular apoptosis. Genes encoding intestinal stem cell markers BMI1 and OLFM4 are upregulated in the colon of Nlrc3?/? mice. Herein, we discuss recent findings and explore mechanisms through which NLRC3 regulates PI3K–mTOR signaling. Our studies highlight the therapeutic potential of modulating NLRC3 to prevent and treat cancer.  相似文献   

13.
Myocardial infarction is one of the leading causes of mortality in aged people. Whether age of donors of mesenchymal stem cells (MSCs) affects its ability to repair the senescent heart tissue is unknown. In the present study, MSCs from young (2 months) and aged (18 months) green fluorescent protein expressing C57BL/6 mice were characterized with p16INK4a and β‐gal associated senescence. Myocardial infarction was produced in 18‐month‐old wild‐type C57BL/6 mice transplanted with MSCs from young and aged animals in the border of the infarct region. Expression of p16INK4a in MSCs from aged animals was significantly higher (21.5%± 1.2, P < 0.05) as compared to those from young animals (9.2%± 2.8). A decline in the tube‐forming ability on Matrigel was also observed in aged MSCs as well as down‐regulation of insulin‐like growth factor‐1, fibroblast growth factor (FGF‐2), vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) compared to young cells. Mice transplanted with young MSCs exhibited significant improvement in their left ventricle (LV) systolic and diastolic function as demonstrated by dp/dtmax, dp/dtmin, Pmax. Reduction in the LV fibrotic area was concomitant with neovascularization as demonstrated by CD31 and smooth muscle actin (SMA) expression. Real‐time RT‐PCR analysis for VEGF, stromal cell derived factor (SDF‐1α) and GATA binding factor 4 (GATA‐4) genes further confirmed the effect of age on MSC differentiation towards cardiac lineages and enhanced angiogenesis. These studies lead to the conclusion that repair potential of MSCs is dependent on the age of donors and the repair of senescent infarcted myocardium requires young healthy MSCs.  相似文献   

14.
Thioredoxin-interacting protein (TXNIP) is induced by high glucose (HG), whereupon it acts to inhibit thioredoxin, thereby promoting oxidative stress. We have found that TXNIP knockdown in human renal tubular cells helped prevent the epithelial-to-mesenchymal transition (EMT). Here, we studied the potential effect of TXNIP on podocyte phenotypic alterations in diabetic nephropathy (DN) in vivo and in vitro. In conditionally immortalized mouse podocytes under HG conditions, knocking down TXNIP disrupted EMT, reactive oxygen species (ROS) production, and mammalian target of rapamycin (mTOR) pathway activation. Further, Raptor short hairpin RNA (shRNA), Rictor shRNA, and mTOR specific inhibitor KU-0063794 were used to assess if the mTOR signal pathway is involved in HG-induced EMT in podocytes. We found that Raptor shRNA, Rictor shRNA, and KU-0063794 could all restrain HG-induced EMT and ROS production in podocytes. In addition, antioxidant Tempol or N-acetylcysteine presented a prohibitive effect on HG-induced EMT in podocytes. Streptozotocin was utilized to render equally diabetic in wild-type (WT) control and TXNIP −/− (TKO) mice. Diabetes did not increase levels of 24-hr urinary protein, serum creatinine, blood urea nitrogen, and triglyceride in TXNIP −/− mice. Podocyte phenotypic alterations and podocyte loss were detected in WT but not in TKO diabetic mice. Oxidative stress was also suppressed in diabetic TKO mice relative to WT controls. Also, TXNIP deficiency suppresses the activation of mTOR in glomeruli of streptozotocin-induced diabetic mice. Moreover, TXNIP expression, mTOR activation, Nox1, and Nox4 could be detected in renal biopsy tissues of patients with DN. This suggests that decreased TXNIP could ameliorate phenotypic alterations of podocytes via inhibition of mTOR in DN, highlighting TXNIP as a promising therapeutic target.  相似文献   

15.
《Free radical research》2013,47(2):186-198
Abstract

Nicotinamide adenine dinucleotide phosphate oxidases (NOX) are enzymes that generate reactive oxygen species (ROS). NOX2 activity in the vascular wall is elevated in hypercholesterolemia, and contributes to oxidative stress and atherogenesis. Here we examined the role of another NOX isoform, NOX1, in atherogenesis in apolipoprotein E-knockout (APOE?/?) mice fed a Western diet for 14 weeks. Although NOX1 mRNA expression was unchanged in aortas from APOE?/? versus wild-type mice, expression of the NOX1-specific organizer, NOXO1, was diminished, consistent with an overall reduction in NOX1 activity in APOE?/? mice. To examine the impact of a further reduction in NOX1 activity, APOE?/? mice were crossed with NOX1?/y mice to generate NOX1?/y/APOE?/? double-knockouts. NOX1 deficiency in APOE?/? mice was associated with 30–50% higher plasma very-low-density lipoprotein (VLDL)/LDL and triglyceride levels (P < 0.01). Vascular ROS levels were also elevated by twofold in NOX1?/y/APOE?/? versus APOE?/? mice (P < 0.05), despite no changes in expression of other NOX subunits. Although en face analysis of the descending aorta revealed no differences in plaque area between NOX1?/y/APOE?/? and APOE?/? mice, intimal thickening in the aortic sinus was increased by 40% (P < 0.05) in the double-knockouts. Moreover, NOX1 deficiency was associated with a less stable plaque phenotype; aortic sinus lesions contained 60% less collagen (P < 0.01), 40% less smooth muscle (P < 0.01), and 2.5-fold higher levels of matrix metalloproteinase-9 (P < 0.001) than lesions in APOE?/? mice. Thus, these data, which suggest a protective role for NOX1 against hyperlipidemia and atherosclerosis in APOE?/? mice, highlight the complex and contrasting roles of different NOX isoforms (e.g., NOX2 versus NOX1) in vascular pathology.  相似文献   

16.
The discovery of treatments to prevent or delay dementia and Alzheimer's disease is a priority. The gene APOE is associated with cognitive change and late‐onset Alzheimer's disease, and epidemiological studies have provided strong evidence that the e2 allele of APOE has a neuroprotective effect, it is associated with increased longevity and an extended healthy lifespan in centenarians. In this study, we correlated APOE genotype data of 222 participants of the New England Centenarian Study, including 75 centenarians, 82 centenarian offspring, and 65 controls, comprising 55 carriers of APOE e2, with aptamer‐based serum proteomics (SomaLogic technology) of 4,785 human proteins corresponding to 4,137 genes. We discovered a signature of 16 proteins that associated with different APOE genotypes and replicated the signature in three independent studies. We also show that the protein signature tracks with gene expression profiles in brains of late‐onset Alzheimer's disease versus healthy controls. Finally, we show that seven of these proteins correlate with cognitive function patterns in longitudinally collected data. This analysis in particular suggests that Baculoviral IAP repeat containing two (BIRC2) is a novel biomarker of neuroprotection that associates with the neuroprotective allele of APOE. Therefore, targeting APOE e2 molecularly may preserve cognitive function.  相似文献   

17.
In this work, diffuse near-infrared light reflectance spectroscopy based on a single optical probe, contains central single collection fiber surrounded by a circular array of illumination fibers, was used to quantify cerebral tissue properties in ApoE knockout mice following Sarcopoterium spinosum treatment. Sarcopoterium spinosum, also known as Thorny burnet, is a Mediterranean plant widely used as a traditional therapy for the treatment of a variety of pathologies, primarily type 2 diabetes mellitus (T2D). While it's efficacy in the treatment of T2D, and of other components of metabolic syndrome, have already been validated by us, the aim of this study was to investigate the effects of Sarcopoterium spinosum extract (SSE) on dyslipidemia and vascular functions. We utilized ApoE deficient mice (ApoE−/−, Atherosclerosis-prone apolipoprotein E-deficient), who have a severe impairment in plasma lipoprotein clearance and thus develop alterations in blood lipid profile and are highly susceptible to atherogenic plaque formation. A total of 34 male mice were divided into five groups representing various genetic, dietary, and treatment configurations. Optical measurements were used to assess changes in diffused reflectance spectra, optical properties (absorption and scattering), and cerebral tissue chromophore contents. Specifically, significant improvement in cerebral hemoglobin level was observed in ApoE KO mice, fed an artherogenic diet (ATD), upon SSE treatment. Biochemical and histological analyses of ApoE−/−ATD mice showed elevated body weight and a high level of blood triglycerides, free fatty acids and cholesterol. In contrast, in SSE treated mice improvement was observed, suggesting beneficial effects of SSE. In ApoE−/−ATD mice group a higher levels of deoxyhemoglobin was monitored indicating that the rate of oxygen release to the tissue is low. This was supported by decrease in oxygen saturation. It was also shown a reduction in water content in the brain of ApoE KO. Mice fed with the atherogenic diet demonstrated increased water content as compared to STD-fed ApoE KO mice, while SSE administration reversed the effect of the diet. To our knowledge, no such study has been reported before.  相似文献   

18.
Hepatitis C virus (HCV) modulates host lipid metabolism as part of its lifecycle and is dependent upon VLDL for co-assembly and secretion. HCV dyslipidemia is associated with steatosis, insulin resistance, IL28B genotype and disease progression. Apolipoprotein E (ApoE) is an important lipid transport protein, a key constituent of VLDL, and is involved in immunomodulation. Our aims were to determine the role of APOE regional polymorphisms on host lipids, IL28B genotype and disease severity in chronic HCV (CHC) patients. The study cohort included 732 CHC patients with available DNA for genotype determination of four polymorphisms in the chromosome 19 region that encompasses the TOMM40, APOE and APOC1 genes. Serum lipid analysis and apolipoproteins levels were measured using an immunoturbidimetric assay. APOE rs7412 polymorphism (capturing the ε2 isoform) was significantly associated with serum ApoE levels in both Caucasians and African-American patients (p?=?2.3?×?10?11) and explained 7?% of variance in serum ApoE. Among IL28B-CC patients (n?=?196), the rs429358 (defines ε4 isoform) and TOMM40 ‘523’ S polymorphisms were associated with 12?% of variance in ApoB levels. Patients homozygous for the APOE ε3 isoform had a greater than twofold increased odds of F2–F4 fibrosis (p?=?1.8?×?10?5), independent of serum lipid and lipoprotein levels. There were no associations between APOE polymorphisms and serum HDL-C, APO-CIII and triglycerides. In CHC patients, genetic heterogeneity in the APOE/TOMM40 genomic region is significantly associated with variation in serum ApoE and ApoB levels, and also with fibrosis suggesting a pleiotropic attribute of this genomic region.  相似文献   

19.
Despite Apolipoprotein E (ApoE) being one of the main apolipoproteins in the blood, the association between its genotype and the high cholesterol or blood glucose levels commonly seen in clinical practice is inconclusive. Such research is also lacking in the Han population. The aim of this study was to investigate the association between APOE genotype, diabetes, and plasma glucose and lipid levels. We included 243 community-dwelling elderly residents in this study. Participant APOE genotypes were assessed and were simultaneously tested for weight, height, blood glucose, triglycerides, cholesterol, and high- and low-density lipoprotein. In addition, gender, age, years of education, cognitive function, and medical history was recorded. Subjects were divided into 3 groups based on APOE genotype: APOE ε2 group (ε2/ε2 and ε2/ε3), APOE ε3 group (ε3/ε3), and APOE ε4 group (ε2/ε4, ε3/ε4 and ε4/ε4). Comparisons between groups were conducted for the incidence of diabetes, high blood pressure, and dementia, as well as for differences in body-mass index, fasting plasma glucose, and blood lipids. The APOE ε3/ε3 genotype exhibited the highest frequency (70.4%) among the subjects. Participants in the APOE ε3 group demonstrated significantly higher levels of fasting plasma glucose than those in the APOE ε2 and APOE ε4 groups (P<0.05). The APOE ε3 group had slightly higher abnormal fasting plasma glucose values than did the APOE ε2 group (P = 0.065). Furthermore, the APOE3 genotype was significantly correlated with both fasting plasma glucose level and glucose abnormality (P< 0.05) and trended toward statistically significant correlation with diabetes (P = 0.082). The correlation between APOE2 and low low-density lipoprotein levels also approached statistical significance (P = 0.052). Thus, elderly community dwelling residents of Han ethnicity carrying the APOE ε3/ε3 genotype might have higher plasma glucose levels and a higher occurrence of diabetes.  相似文献   

20.
While reports suggest a single dose of senolytics may improve vasomotor function, the structural and functional impact of long‐term senolytic treatment is unknown. To determine whether long‐term senolytic treatment improves vasomotor function, vascular stiffness, and intimal plaque size and composition in aged or hypercholesterolemic mice with established disease. Senolytic treatment (intermittent treatment with Dasatinib + Quercetin via oral gavage) resulted in significant reductions in senescent cell markers (TAF+ cells) in the medial layer of aorta from aged and hypercholesterolemic mice, but not in intimal atherosclerotic plaques. While senolytic treatment significantly improved vasomotor function (isolated organ chamber baths) in both groups of mice, this was due to increases in nitric oxide bioavailability in aged mice and increases in sensitivity to NO donors in hypercholesterolemic mice. Genetic clearance of senescent cells in aged normocholesterolemic INK‐ATTAC mice phenocopied changes elicited by D+Q. Senolytics tended to reduce aortic calcification (alizarin red) and osteogenic signaling (qRT–PCR, immunohistochemistry) in aged mice, but both were significantly reduced by senolytic treatment in hypercholesterolemic mice. Intimal plaque fibrosis (picrosirius red) was not changed appreciably by chronic senolytic treatment. This is the first study to demonstrate that chronic clearance of senescent cells improves established vascular phenotypes associated with aging and chronic hypercholesterolemia, and may be a viable therapeutic intervention to reduce morbidity and mortality from cardiovascular diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号