首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The therapeutic hypothermia is an effective tool for TBI‐associated brain impairment, but its side effects limit in clinical routine use. Hypothermia up‐regulates RNA‐binding motif protein 3 (RBM3), which is verified to protect synaptic plasticity. Here, we found that cognitive and LTP deficits, loss of spines, AD‐like tau pathologies are displayed one month after TBI in mice. In contrast, the deficits of LTP and cognitive, loss of spines and tau abnormal phosphorylation at several sites are obviously reversed in TBI mice combined with hypothermia pre‐treatment (HT). But, the neuroprotective role of HT disappears in TBI mouse models under condition of blocking RBM3 expression with RBM3 shRNA. In other hand, overexpressing RBM3 by AAV‐RBM3 plasmid can mimic HT‐like neuroprotection against TBI‐induced chronic brain injuries, such as improving LTP and cognitive, loss of spines and tau hyperphosphorylation in TBI mouse models. Taken together, hypothermia pre‐treatment reverses TBI‐induced chronic AD‐like pathology and behaviour deficits in RBM3 expression dependent manner, RBM3 may be a potential target for neurodegeneration diseases including Alzheimer disease.  相似文献   

2.
3.
Alzheimer's disease (AD) involves several possible molecular mechanisms, including impaired brain insulin signaling and glucose metabolism. To investigate the role of metabolic insults in AD, we injected streptozotocin (STZ), a diabetogenic compound if used in the periphery, into the lateral ventricle of the 6-month-old 3xTg-AD mice and studied the cognitive function as well as AD-like brain abnormalities, such as tau phosphorylation and Aβ accumulation, 3–6 weeks later. We found that STZ exacerbated impairment of short-term and spatial reference memory in 3xTg-AD mice. We also observed an increase in tau hyperphosphorylation and neuroinflammation, a disturbance of brain insulin signaling, and a decrease in synaptic plasticity and amyloid β peptides in the brain after STZ treatment. The expression of 20 AD-related genes, including those involved in the processing of amyloid precursor protein, cytoskeleton, glucose metabolism, insulin signaling, synaptic function, protein kinases, and apoptosis, was altered, suggesting that STZ disturbs multiple metabolic and cell signaling pathways in the brain. These findings provide experimental evidence of the role of metabolic insult in AD.  相似文献   

4.
5.
Increasing evidence points to soluble assemblies of aggregating proteins as a major mediator of neuronal and synaptic dysfunction. In Alzheimer disease (AD), soluble amyloid-beta (Abeta) appears to be a key factor in inducing synaptic and cognitive abnormalities. Here we report the novel finding that soluble tau also plays a role in the cognitive decline in the presence of concomitant Abeta pathology. We describe improved cognitive function following a reduction in both soluble Abeta and tau levels after active or passive immunization in advanced aged 3xTg-AD mice that contain both amyloid plaques and neurofibrillary tangles (NFTs). Notably, reducing soluble Abeta alone did not improve the cognitive phenotype in mice with plaques and NFTs. Our results show that Abeta immunotherapy reduces soluble tau and ameliorates behavioral deficit in old transgenic mice.  相似文献   

6.
It has become generally accepted that new neurones are added and integrated mainly in two areas of the mammalian CNS, the subventricular zone and the subgranular zone (SGZ) of the dentate gyrus (DG) of the hippocampus, which is of central importance in learning and memory. The newly generated cells display neuronal morphology, are able to generate action potentials and receive functional synaptic inputs, i.e. their properties are similar to those found in mature neurones. Alzheimer's disease (AD) is the primary and widespread cause of dementia and is an age-related, progressive and irreversible neurodegenerative disease that deteriorates cognitive functions. Here, we have used male and female triple transgenic mice (3xTg-AD) harbouring three mutant genes (beta-amyloid precursor protein, presenilin-1 and tau) and their respective non-transgenic (non-Tg) controls at 2, 3, 4, 6, 9 and 12 months of age to establish the link between AD and neurogenesis. Using immunohistochemistry we determined the area density of proliferating cells within the SGZ of the DG, measured by the presence of phosphorylated Histone H3 (HH3), and their possible co-localisation with GFAP to exclude a glial phenotype. Less than 1% of the HH3 labeled cells co-localised with GFAP. Both non-Tg and 3xTg-AD showed an age-dependent decrease in neurogenesis. However, male 3xTg-AD mice demonstrated a further reduction in the production of new neurones from 9 months of age (73% decrease) and a complete depletion at 12 months, when compared to controls. In addition, female 3xTg-AD mice showed an earlier but equivalent decrease in neurogenesis at 4 months (reduction of 63%) with an almost inexistent rate at 12 months (88% decrease) compared to controls. This reduction in neurogenesis was directly associated with the presence of beta-amyloid plaques and an increase in the number of beta-amyloid containing neurones in the hippocampus; which in the case of 3xgTg females was directly correlated. These results suggest that 3xTg-AD mice have an impaired ability to generate new neurones in the DG of the hippocampus, the severity of which increases with age and might be directly associated with the known cognitive impairment observed from 6 months of age onwards . The earlier reduction of neurogenesis in females, from 4 months, is in agreement with the higher prevalence of AD in women than in men. Thus it is conceivable to speculate that a recovery in neurogenesis rates in AD could help to rescue cognitive impairment.  相似文献   

7.
Alzheimer’s disease (AD) can be divided into sporadic AD (SAD) and familial AD (FAD). Most AD cases are sporadic and may result from multiple etiologic factors, including environmental, genetic and metabolic factors, whereas FAD is caused by mutations of presenilins or amyloid-β (Aβ) precursor protein (APP). A commonly used mouse model for AD is 3xTg-AD mouse, which is generated by over-expression of mutated presenilin 1, APP and tau in the brain and thus represents a mouse model of FAD. A mouse model generated by intracerebroventricular (icv) administration of streptozocin (STZ), icv-STZ mouse, shows many aspects of SAD. Despite the wide use of these two models for AD research, differences in gene expression between them are not known. Here, we compared the expression of 84 AD-related genes in the hippocampus and the cerebral cortex between icv-STZ mice and 3xTg-AD mice using a custom-designed qPCR array. These genes are involved in APP processing, tau/cytoskeleton, synapse function, apoptosis and autophagy, AD-related protein kinases, glucose metabolism, insulin signaling, and mTOR pathway. We found altered expression of around 20 genes in both mouse models, which affected each of above categories. Many of these gene alterations were consistent with what was observed in AD brain previously. The expression of most of these altered genes was decreased or tended to be decreased in the hippocampus of both mouse models. Significant diversity in gene expression was found in the cerebral cortex between these two AD mouse models. More genes related to synaptic function were dysregulated in the 3xTg-AD mice, whereas more genes related to insulin signaling and glucose metabolism were down-regulated in the icv-STZ mice. The present study provides important fundamental knowledge of these two AD mouse models and will help guide future studies using these two mouse models for the development of AD drugs.  相似文献   

8.
Brain-derived neurotrophic factor (BDNF) is a neurotrophin critically involved in cell survival, synaptic plasticity, and memory. BDNF has recently garnered significant attention as a potential therapeutic target for neurodegenerative diseases such as Alzheimer disease (AD), but emerging evidence suggests that BDNF may also be mechanistically involved in the pathogenesis of AD. AD patients have substantially reduced BDNF levels, which may be a result of Aβ and tau pathology. Recent evidence, however, indicates reduced BDNF levels may also serve to drive pathology in neuronal cultures, although this has not yet been established in vivo. To further investigate the mechanistic role of BDNF in AD, we generated 3xTg-AD mice with a heterozygous BDNF knockout (BDNF(+/-)) and analyzed Aβ and tau pathology. Aged 3xTg-AD/BDNF(+/-) mice have significantly reduced levels of brain BDNF, but have comparable levels of Aβ and tau pathology to 3xTg-AD/BDNF(+/+) mice. These findings indicate that chronic reduction of BDNF does not exacerbate the development of Aβ and tau pathology, and instead suggests the reduced BDNF levels found in AD patients are a consequence of these pathologies.  相似文献   

9.
Accumulation of beta-amyloid (Aβ) is an important pathological event in Alzheimer’s disease (AD). It is now well known that vaccination against fibrillar Aβ prevents amyloid accumulation and preserves cognitive function in transgenic mouse models. To study the effect of vaccination against generic oligomer epitopes, Aβ oligomers, islet amyloid polypeptide oligomers, random peptide oligomer (3A), and Aβ fibrils were used to vaccinate 3xTg-AD, which develop a progressive accumulation of plaques and cognitive impairment. Subcutaneous administration of these antigens markedly reduced total plaque load (Aβ burden) and improved cognitive function in the 3xTg-AD mouse brains as compared to controls. We demonstrated that vaccination with this nonhuman amyloid oligomer generated high titers of specifically antibodies recognizing Aβ oligomers, which in turn inhibited accumulation of Aβ pathology in mice. In addition to amyloid plaques, another hallmark of AD is tau pathology. It was found that there was a significant decline in the level of hyper-phosphorylated tau following vaccination. We have previously shown that immunization with 3A peptide improves cognitive function and clears amyloid plaques in Tg2576 mice, which provides a novel strategy of AD therapy. Here, we have shown that vaccination with 3A peptide in 3xTg-AD mice not only clears amyloid plaques but also extensively clears abnormal tau in brain.  相似文献   

10.
Cdk5 dysregulation is a major event in the neurodegenerative process of Alzheimer's disease (AD). In vitro studies using differentiated neurons exposed to Aβ exhibit Cdk5-mediated tau hyperphosphorylation, cell cycle re-entry and neuronal loss. In this study we aimed to determine the role of Cdk5 in neuronal injury occurring in an AD mouse model obtained through the intracerebroventricular (icv) injection of the Aβ1–40 synthetic peptide. In mice icv-injected with Aβ, Cdk5 activator p35 is cleaved by calpains, leading to p25 formation and Cdk5 overactivation. Subsequently, there was an increase in tau hyperphosphorylation, as well as decreased levels of synaptic markers. Cell cycle reactivation and a significant neuronal loss were also observed. These neurotoxic events in Aβ-injected mice were prevented by blocking calpain activation with MDL28170 , which was administered intraperitoneally (ip). As MDL prevents p35 cleavage and subsequent Cdk5 overactivation, it is likely that this kinase is involved in tau hyperphosphorylation, cell cycle re-entry, synaptic loss and neuronal death triggered by Aβ. Altogether, these data demonstrate that Cdk5 plays a pivotal role in tau phosphorylation, cell cycle induction, synaptotoxicity, and apoptotic death in postmitotic neurons exposed to Aβ peptides in vivo , acting as a link between diverse neurotoxic pathways of AD.  相似文献   

11.
There is an urgent need to identify modifiable environmental risk factors that reduce the incidence of Alzheimer's disease (AD). The B-like vitamin choline plays key roles in body- and brain-related functions. Choline produced endogenously by the phosphatidylethanolamine N-methyltransferase protein in the liver is not sufficient for adequate physiological functions, necessitating daily dietary intake. ~90% of Americans do not reach the recommended daily intake of dietary choline. Thus, it's imperative to determine whether dietary choline deficiency increases disease outcomes. Here, we placed 3xTg-AD, a model of AD, and non-transgenic (NonTg) control mice on either a standard laboratory diet with sufficient choline (ChN; 2.0 g/kg choline bitartrate) or a choline-deficient diet (Ch-; 0.0 g/kg choline bitartrate) from 3 to 12 (early to late adulthood) months of age. A Ch- diet reduced blood plasma choline levels, increased weight, and impaired both motor function and glucose metabolism in NonTg mice, with 3xTg-AD mice showing greater deficits. Tissue analyses showed cardiac and liver pathology, elevated soluble and insoluble Amyloid-β and Thioflavin S structures, and tau hyperphosphorylation at various pathological epitopes in the hippocampus and cortex of 3xTg-AD Ch- mice. To gain mechanistic insight, we performed unbiased proteomics of hippocampal and blood plasma samples. Dietary choline deficiency altered hippocampal networks associated with microtubule function and postsynaptic membrane regulation. In plasma, dietary choline deficiency altered protein networks associated with insulin metabolism, mitochondrial function, inflammation, and fructose metabolic processing. Our data highlight that dietary choline intake is necessary to prevent systems-wide organ pathology and reduce hallmark AD pathologies.  相似文献   

12.
Alzheimer''s disease (AD) is an age-associated progressive neurodegenerative disorder with dementia, the exact pathogenic mechanisms of which remain unknown. We previously reported that homocysteic acid (HA) may be one of the pathological biomarkers in the brain with AD and that the increased levels of HA may induce the accumulation of intraneuronal amyloid-beta (Aβ) peptides. In this study, we further investigated the pathological role of HA in a mouse model of AD. Four-month-old prepathological 3xTg-AD mice exhibited higher levels of HA in the hippocampus than did age-matched nontransgenic mice, suggesting that HA accumulation may precede both Aβ and tau pathologies. We then fed 3-month-old 3xTg-AD mice with vitamin B6-deficient food for 3 weeks to increase the HA levels in the brain. Concomitantly, mice received either saline or anti-HA antibody intraventricularly via a guide cannula every 3 days during the course of the B6-deficient diet. We found that mice that received anti-HA antibody significantly resisted cognitive impairment induced by vitamin B6 deficiency and that AD-related pathological changes in their brains was attenuated compared with the saline-injected control group. A similar neuroprotective effect was observed in 12-month-old 3xTg-AD mice that received anti-HA antibody injections while receiving the regular diet. We conclude that increased brain HA triggers memory impairment and that this condition deteriorates with amyloid and leads to subsequent neurodegeneration in mouse models of AD.  相似文献   

13.
The two hallmark pathologies of Alzheimer's disease (AD) are amyloid plaques, composed of the small amyloid-beta (Abeta) peptide, and neurofibrillary tangles, comprised aggregates of the microtubule binding protein, tau. The molecular linkage between these two lesions, however, remains unknown. Based on human and mouse studies, it is clear that the development of Abeta pathology can trigger tau pathology, either directly or indirectly. However, it remains to be established if the interaction between Abeta and tau is bidirectional and whether the modulation of tau will influence Abeta pathology. To address this question, we used the 3xTg-AD mouse model, which is characterized by the age-dependent buildup of both plaques and tangles. Here we show that genetically augmenting tau levels and hyperphosphorylation in the 3xTg-AD mice has no effect on the onset and progression of Abeta pathology. These data suggest that the link between Abeta and tau is predominantly if not exclusively unidirectional, which is consistent with the Abeta cascade hypothesis and may explain why tauopathy-only disorders are devoid of any Abeta pathology.  相似文献   

14.
Inflammation is a key pathological hallmark of Alzheimer's disease (AD), although its impact on disease progression and neurodegeneration remains an area of active investigation. Among numerous inflammatory cytokines associated with AD, IL-1β in particular has been implicated in playing a pathogenic role. In this study, we sought to investigate whether inhibition of IL-1β signaling provides disease-modifying benefits in an AD mouse model and, if so, by what molecular mechanisms. We report that chronic dosing of 3xTg-AD mice with an IL-1R blocking Ab significantly alters brain inflammatory responses, alleviates cognitive deficits, markedly attenuates tau pathology, and partly reduces certain fibrillar and oligomeric forms of amyloid-β. Alterations in inflammatory responses correspond to reduced NF-κB activity. Furthermore, inhibition of IL-1 signaling reduces the activity of several tau kinases in the brain, including cdk5/p25, GSK-3β, and p38-MAPK, and also reduces phosphorylated tau levels. We also detected a reduction in the astrocyte-derived cytokine, S100B, and in the extent of neuronal Wnt/β-catenin signaling in 3xTg-AD brains, and provided in vitro evidence that these changes may, in part, provide a mechanistic link between IL-1 signaling and GSK-3β activation. Taken together, our results suggest that the IL-1 signaling cascade may be involved in one of the key disease mechanisms for AD.  相似文献   

15.
Deregulation of glycogen synthase kinase-3 (GSK-3) activity in neurones has been postulated as a key feature in Alzheimer's disease (AD) pathogenesis. This was further supported by our recent characterization of transgenic mice that conditionally over-express GSK-3beta in hippocampal and cortical neurones. These mice, designated Tet/GSK-3beta, showed many of the biochemical and cellular aspects of AD neuropathology such as tau hyperphosphorylation and somatodendritic localization, decreased nuclear beta-catenin, neuronal death and reactive gliosis. Tet/GSK-3beta mice, however, did not show tau filament formation up to the latest tested age of 3 months at least. Here we report spatial learning deficits of Tet/GSK-3beta mice in the Morris water maze. In parallel, we also measured the increase in GSK-3 activity while further exploring the possibility of tau filament formation in aged mice. We found a significant increase in GSK-3 activity in the hippocampus of Tet/GSK-3beta mice whereas no tau fibrils could be found even in very old mice. These data reinforce the hypothesis of GSK-3 deregulation in AD pathogenesis, and suggest that Tet/GSK-3beta mice can be used as an AD model and, most remarkably, can be used to test the therapeutic potential of the selective GSK-3 inhibitors that are currently under development. Additionally, these experiments suggest that destabilization of microtubules and alteration of intracellular metabolic pathways contribute to AD pathogenesis independent of toxicity triggered by the aberrant tau deposits.  相似文献   

16.
Hyperphosphorylated tau proteins accumulate in the paired helical filaments of neurofibrillary tangles seen in such tauopathies as Alzheimer's disease. In the present paper we show that tau turnover is dependent on degradation by the proteasome (inhibited by MG132) in HT22 neuronal cells. Recombinant human tau was rapidly degraded by the 20 S proteasome in vitro, but tau phosphorylation by GSK3beta (glycogen synthase kinase 3beta) significantly inhibited proteolysis. Tau phosphorylation was increased in HT22 cells by OA [okadaic acid; which inhibits PP (protein phosphatase) 1 and PP2A] or CsA [cyclosporin A; which inhibits PP2B (calcineurin)], and in PC12 cells by induction of a tet-off dependent RCAN1 transgene (which also inhibits PP2B). Inhibition of PP1/PP2A by OA was the most effective of these treatments, and tau hyperphosphorylation induced by OA almost completely blocked tau degradation in HT22 cells (and in cell lysates to which purified proteasome was added) even though proteasome activity actually increased. Many tauopathies involve both tau hyperphosphorylation and the oxidative stress of chronic inflammation. We tested the effects of both cellular oxidative stress, and direct tau oxidative modification in vitro, on tau proteolysis. In HT22 cells, oxidative stress alone caused no increase in tau phosphorylation, but did subtly change the pattern of tau phosphorylation. Tau was actually less susceptible to direct oxidative modification than most cell proteins, and oxidized tau was degraded no better than untreated tau. The combination of oxidative stress plus OA treatment caused extensive tau phosphorylation and significant inhibition of tau degradation. HT22 cells transfected with tau-CFP (cyan fluorescent protein)/tau-GFP (green fluorescent protein) constructs exhibited significant toxicity following tau hyperphosphorylation and oxidative stress, with loss of fibrillar tau structure throughout the cytoplasm. We suggest that the combination of tau phosphorylation and tau oxidation, which also occurs in tauopathies, may be directly responsible for the accumulation of tau aggregates.  相似文献   

17.
G protein-coupled receptor kinase 5 (GRK5) is a serine/threonine kinase whose dysfunction results in cognitive impairment and Alzheimer-like pathology, including tau hyperphosphorylation. However, the mechanisms whereby GRK5 influences tau phosphorylation remain incompletely understood. In the current study, we showed that GRK5 influenced the phosphorylation of tau via glycogen synthase kinase 3β (GSK3β). The activity of both tau and GSK3β in the hippocampus was increased in aged GRK5-knockout mice, which is consistent with what occurs in APP/PS1 transgenic mice. Furthermore, GRK5 regulated the activity of GSK3β and phosphorylated tau in vitro. Regardless of changes of GRK5 protein levels, tau hyperphosphorylation remained reduced after GSK3β activity was inhibited, suggesting that GRK5 may specifically influence tau hyperphosphorylation by modulating GSK3β activity. Taken together, our findings suggest that GRK5 deficiency contributes to the pathogenesis of Alzheimer's disease by influencing the hyperphosphorylation of tau through the activation of GSK3β.  相似文献   

18.
Defects in neuronal activity of the entorhinal cortex (EC) are suspected to underlie the symptoms of Alzheimer's disease (AD). Whereas neuroprotective effects of docosahexaenoic acid (DHA) have been described, the effects of DHA on the physiology of EC neurons remain unexplored in animal models of AD. Here, we show that DHA consumption improved object recognition (↑12%), preventing deficits observed in old 3xTg-AD mice (↓12%). Moreover, 3xTg-AD mice displayed seizure-like akinetic episodes, not detected in NonTg littermates and partly prevented by DHA (↓50%). Patch-clamp recording revealed that 3xTg-AD EC neurons displayed (i) loss of cell capacitance (CC), suggesting reduced membrane surface area; (ii) increase of firing rate versus injected current (F-I) curve associated with modified action potentials, and (iii) overactivation of glutamatergic synapses, without changes in synaptophysin levels. DHA consumption increased CC (↑12%) and decreased F-I slopes (↓21%), thereby preventing the opposite alterations observed in 3xTg-AD mice. Our results indicate that cognitive performance and basic physiology of EC neurons depend on DHA intake in a mouse model of AD.  相似文献   

19.
Sporadic Alzheimer's disease (AD) is the most prevalent form of dementia, but no clear disease‐initiating mechanism is known. Aβ deposits and neuronal tangles composed of hyperphosphorylated tau are characteristic for AD. Here, we analyze the contribution of microRNA‐125b (miR‐125b), which is elevated in AD. In primary neurons, overexpression of miR‐125b causes tau hyperphosphorylation and an upregulation of p35, cdk5, and p44/42‐MAPK signaling. In parallel, the phosphatases DUSP6 and PPP1CA and the anti‐apoptotic factor Bcl‐W are downregulated as direct targets of miR‐125b. Knockdown of these phosphatases induces tau hyperphosphorylation, and overexpression of PPP1CA and Bcl‐W prevents miR‐125b‐induced tau phosphorylation, suggesting that they mediate the effects of miR‐125b on tau. Conversely, suppression of miR‐125b in neurons by tough decoys reduces tau phosphorylation and kinase expression/activity. Injecting miR‐125b into the hippocampus of mice impairs associative learning and is accompanied by downregulation of Bcl‐W, DUSP6, and PPP1CA, resulting in increased tau phosphorylation in vivo. Importantly, DUSP6 and PPP1CA are also reduced in AD brains. These data implicate miR‐125b in the pathogenesis of AD by promoting pathological tau phosphorylation.  相似文献   

20.
Hyperphosphorylation of tau protein (tau) causes neurodegenerative diseases such as Alzheimer's disease (AD). Recent studies of the physiological correlation between tau and α-synuclein (α-SN) have demonstrated that: (a) phosphorylated tau is also present in Lewy bodies, which are cytoplasmic inclusions formed by abnormal aggregation of α-SN; and (b) the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) increases the phosphorylation of tau as well as the protein level of α-SN in cultured neuronal cells, and also in mice. However, the molecular mechanism responsible for the α-SN-mediated hyperphosphorylation of tau remains to be elucidated. In this in vitro study, we found that: (a) α-SN directly stimulates the phosphorylation of tau by glycogen synthase kinase-3β (GSK-3β), (b) α-SN forms a heterotrimeric complex with tau and GSK-3β, and (c) the nonamyloid beta component (NAC) domain and an acidic region of α-SN are responsible for the stimulation of GSK-3β-mediated tau phosphorylation. Thus, it is concluded that α-SN functions as a connecting mediator for tau and GSK-3β, resulting in GSK-3β-mediated tau phosphorylation. Because the expression of α-SN is promoted by oxidative stress, the accumulation of α-SN induced by such stress may directly induce the hyperphosphorylation of tau by GSK-3β. Furthermore, we found that heat shock protein 70 (Hsp70) suppresses the α-SN-induced phosphorylation of tau by GSK-3β through its direct binding to α-SN, suggesting that Hsp70 acts as a physiological suppressor of α-SN-mediated tau hyperphosphorylation. These results suggest that the cellular level of Hsp70 may be a novel therapeutic target to counteract α-SN-mediated tau phosphorylation in the initial stage of neurodegenerative disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号