首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aging is a complex process associated with physiological changes in numerous organ systems. In particular, aging of the immune system is characterized by progressive dysregulation of immune responses, resulting in increased susceptibility to infectious diseases, impaired vaccination efficacy and systemic low-grade chronic inflammation. Increasing evidence suggest that intracellular zinc homeostasis, regulated by zinc transporter expression, is critically involved in the signaling and activation of immune cells. We hypothesize that epigenetic alterations and nutritional deficits associated with aging may lead to zinc transporter dysregulation, resulting in decreases in cellular zinc levels and enhanced inflammation with age. The goal of this study was to examine the contribution of age-related zinc deficiency and zinc transporter dysregulation on the inflammatory response in immune cells. The effects of zinc deficiency and age on the induction of inflammatory responses were determined using an in vitro cell culture system and an aged mouse model. We showed that zinc deficiency, particularly the reduction in intracellular zinc in immune cells, was associated with increased inflammation with age. Furthermore, reduced Zip 6 expression enhanced proinflammatory response, and age-specific Zip 6 dysregulation correlated with an increase in Zip 6 promoter methylation. Furthermore, restoring zinc status via dietary supplementation reduced aged-associated inflammation. Our data suggested that age-related epigenetic dysregulation in zinc transporter expression may influence cellular zinc levels and contribute to increased susceptibility to inflammation with age.  相似文献   

2.
The lung changes functionally and structurally with aging. However, age-related effects on the extracellular matrix (ECM) and corresponding effects on lung cell behavior are not well understood. We hypothesized that ECM from aged animals would induce aging-related phenotypic changes in healthy inoculated cells. Decellularized whole organ scaffolds provide a powerful model for examining how ECM cues affect cell phenotype. The effects of age on ECM composition in both native and decellularized mouse lungs were assessed as was the effect of young vs old acellular ECM on human bronchial epithelial cells (hBECs) and lung fibroblasts (hLFs). Native aged (1 year) lungs demonstrated decreased expression of laminins α3 and α4, elastin and fibronectin, and elevated collagen, compared to young (3 week) lungs. Proteomic analyses of decellularized ECM demonstrated similar findings, and decellularized aged lung ECM contained less diversity in structural proteins compared to young ECM. When seeded in old ECM, hBECs and hLFs demonstrated lower gene expression of laminins α3 and α4, respectively, as compared to young ECM, paralleling the laminin deficiency of aged ECM. ECM changes appear to be important factors in potentiating aging-related phenotypes and may provide clues to mechanisms that allow for aging-related lung diseases.  相似文献   

3.
4.
The proportion of elderly people rises in the developed countries. The increased susceptibility of the elderly to infectious diseases is caused by immune dysfunction, especially T cell functional decline. Age-related hematopoietic stem cells deviate from lymphoid lineage to myeloid lineage. Thymus shrinks early in life, which is followed by the decline of na?ve T cells. T-cell receptor repertoire diversity declines by aging, which is caused by cytomegalovirus-driven T cell clonal expansion. Functional decline of B cell induces antibody affinity declines by aging. Many effector functions including phagocytosis of myeloid cells are down regulated by aging. The studies of aging of myeloid cells have some controversial results. Although M1 macrophages have been shown to be replaced by antiinflammatory(M2) macrophages by advanced age, many human studies showed that pro-inflammatory cytokines are elevated in older human. To solve this discrepancy here we divide age-related pathological changes into two categories. One is an aging of immune cell itself. Second is involvement of immune cells to age-related pathological changes. Cellular senescence and damaged cells in aged tissue recruit pro-inflammatory M1 macrophages, which produce pro-inflammatory cytokines and proceed to agerelated diseases. Underlying biochemical and metabolic studies will open nutritional treatment.  相似文献   

5.
Previously, we reported that IL-10-producing mononuclear phagocytes increase in lungs of aged mice, causing impaired innate cytokine expression. Since dendritic cells (DCs) contribute to innate NK cell and adaptive T cell immunity, we tested the hypothesis that age-related IL-10 might influence DC function with effects on NK and T cell activation. The results showed that DC recruitment to sites of lung inflammation was normal in aged mice (>20 mo). However, IFN-gamma-producing NK cells in LPS-challenged lungs were decreased in aged as compared with young mice, which was associated with increased IL-10(+)CD11b(+)Gr-1(low)CD11c(-) cells consistent with mononuclear phagocytes. In vivo or in vitro blockade of IL-10 signaling restored IFN-gamma-producing NK cells. This restoration was reversed by IL-12 neutralization, indicating that IL-10 suppressed sources of IL-12 in aged mice. To probe DC function in adaptive immunity, we transferred young naive OVA-specific TCR transgenic T cells to old mice. Following challenge with OVA plus LPS, Ag presentation in the context of MHC-I and MHC-II occurred with similar kinetics and intensity in draining lymph nodes of young and old recipients as measured by proliferation. Despite this, aged hosts displayed impaired induction of IFN-gamma(+)CD4(+), but not IFN-gamma(+)CD8(+), effector T cells. Blockade of IL-10 signaling reversed age-associated defects. These studies indicate that the innate IL-12/IFN-gamma axis is not intrinsically defective in lungs of aged mice, but is rather suppressed by enhanced production of mononuclear phagocyte-derived IL-10. Our data identify a novel mechanism of age-associated immune deficiency.  相似文献   

6.
7.
Olfactory dysfunction is a prevalent symptom and an early marker of age-related neurodegenerative diseases in humans, including Alzheimer's and Parkinson's Diseases. However, as olfactory dysfunction is also a common symptom of normal aging, it is important to identify associated behavioral and mechanistic changes that underlie olfactory dysfunction in nonpathological aging. In the present study, we systematically investigated age-related behavioral changes in four specific domains of olfaction and the molecular basis in C57BL/6J mice. Our results showed that selective loss of odor discrimination was the earliest smelling behavioral change with aging, followed by a decline in odor sensitivity and detection while odor habituation remained in old mice. Compared to behavioral changes related with cognitive and motor functions, smelling loss was among the earliest biomarkers of aging. During aging, metabolites related with oxidative stress, osmolytes, and infection became dysregulated in the olfactory bulb, and G protein coupled receptor-related signaling was significantly down regulated in olfactory bulbs of aged mice. Poly ADP-ribosylation levels, protein expression of DNA damage markers, and inflammation increased significantly in the olfactory bulb of older mice. Lower NAD+ levels were also detected. Supplementation of NAD+ through NR in water improved longevity and partially enhanced olfaction in aged mice. Our studies provide mechanistic and biological insights into the olfaction decline during aging and highlight the role of NAD+ for preserving smelling function and general health.  相似文献   

8.
Adipose tissue, which is the crucial energy reservoir and endocrine organ for the maintenance of systemic glucose, lipid, and energy homeostasis, undergoes significant changes during aging. These changes cause physiological declines and age-related disease in the elderly population. Here, we review the age-related changes in adipose tissue at multiple levels and highlight the underlying mechanisms regulating the aging process. We also discuss the pathogenic pathways of age-related fat dysfunctions and their systemic negative consequences, such as dyslipidemia, chronic general inflammation, insulin resistance, and type 2 diabetes (T2D). Age-related changes in adipose tissue involve redistribution of deposits and composition, in parallel with the functional decline of adipocyte progenitors and accumulation of senescent cells. Multiple pathogenic pathways induce defective adipogenesis, inflammation, aberrant adipocytokine production, and insulin resistance, leading to adipose tissue dysfunction. Changes in gene expression and extracellular signaling molecules regulate the aging process of adipose tissue through various pathways. In addition, adipose tissue aging impacts other organs that are infiltrated by lipids, which leads to systemic inflammation, metabolic system disruption, and aging process acceleration. Moreover, studies have indicated that adipose aging is an early onset event in aging and a potential target to extend lifespan. Together, we suggest that adipose tissue plays a key role in the aging process and is a therapeutic target for the treatment of age-related disease, which deserves further study to advance relevant knowledge.Subject terms: Senescence, Endocrine system and metabolic diseases  相似文献   

9.
Age-related changes in long-lived tissue-resident stem cells may be tightly linked to aging and age-related diseases such as cancer. Centrosomes play key roles in cell proliferation, differentiation and migration. Supernumerary centrosomes are known to be an early event in tumorigenesis and senescence. However, the age-related changes of centrosome duplication in tissue-resident stem cells in vivo remain unknown. Here, using anti-γ-tubulin and anti-PH3, we analyzed mitotic intestinal stem cells with supernumerary centrosomes in the adult Drosophila midgut, which may be a versatile model system for stem cell biology. The results showed increased centrosome amplification in intestinal stem cells of aged and oxidatively stressed Drosophila midguts. Increased centrosome amplification was detected by overexpression of PVR, EGFR, and AKT in intestinal stem cells/enteroblasts, known to mimic age-related changes including hyperproliferation of intestinal stem cells and hyperplasia in the midgut. Our data show the first direct evidence for the age-related increase of centrosome amplification in intestinal stem cells and suggest that the Drosophila midgut is an excellent model for studying molecular mechanisms underlying centrosome amplification in aging adult stem cells in vivo.  相似文献   

10.
11.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is characterized by a high mortality of elderly men with age-related comorbidities. In most of these patients, uncontrolled local and systemic hyperinflammation induces severe and often lethal outcomes. The aging process is characterized by the gradual development of a chronic subclinical systemic inflammation (inflamm-aging) and by acquired immune system impairment (immune senescence). Here, we advance the hypothesis that four well-recognized features of aging contribute to the disproportionate SARS-CoV-2 mortality suffered by elderly men: i. the presence of subclinical systemic inflammation without overt disease, ii. a blunted acquired immune system and type I interferon response due to the chronic inflammation; iii. the downregulation of ACE2 (i.e. the SARS-CoV-2 receptor); and iv. accelerated biological aging. The high mortality rate of SARS-CoV-2 infection suggests that clarification of the mechanisms of inflamm-aging and immune senescence can help combat not only age-related disorders but also SARS-CoV-2 infection.  相似文献   

12.
13.
Age-related changes in various tissues have been associated with the onset of a number of age-related diseases, including inflammation and cancer. Bladder cancer, for instance, is a disease that mainly afflicts middle-aged or elderly people and is mostly of urothelial origin. Although research on age-related changes of long-lived post-mitotic cells such as neurons is rapidly progressing, nothing is known about age-related changes in the urothelium of the urinary bladder, despite all the evidence confirming the important role of oxidative stress in urinary bladder pathology. The purpose of this study was thus to investigate the oxidative status and age-related changes in urothelial cells of the urinary bladder of young (2 months) and aging (20 months) mice by means of various methods. Our results demonstrated that healthy young urothelium possesses a powerful antioxidant defence system that functions as a strong defence barrier against reactive species. In contrast, urothelial cells of aging bladder show significantly decreased total antioxidant capacity and significantly increased levels of lipid peroxides (MDA) and iNOS, markers of oxidative stress. Our study demonstrates for the first time that ultrastructural alterations in mitochondria and accumulation of lipofuscin, known to be one of the aging pigments, can clearly be found in superficial urothelial cells of the urinary bladder in aging mice. Since the presence of lipofuscin in the urothelium has not yet been reported, we applied various methods to confirm our finding. Our results reveal changes in the oxidative status and structural alterations to superficial urothelial cells similar to those of other long-lived post-mitotic cells.  相似文献   

14.
15.
16.
The liver is a key metabolic organ that maintains whole-body nutrient homeostasis. Aging-induced liver function alterations contribute to systemic susceptibility to aging-related diseases. However, the molecular mechanisms of liver aging remain insufficiently understood. In this study, we performed bulk RNA-Seq and single-cell RNA-Seq analyses to investigate the underlying mechanisms of the aging-induced liver function changes. We found that liver inflammation, glucose intolerance, and liver fat deposition were aggravated in old mice. Aging significantly increased pro-inflammation in hepatic macrophages. Furthermore, we found that Kupffer cells (KCs) were the major driver to induce pro-inflammation in hepatic macrophages during aging. In KCs, aging significantly increased pro-inflammatory levels; in monocyte-derived macrophages (MDMs), aging had a limited effect on pro-inflammation but led to a functional quiescence in antigen presentation and phagosome process. In addition, we identified an aging-responsive KC-specific (ARKC) gene set that potentially mediates aging-induced pro-inflammation in KCs. Interestingly, FOXO1 activity was significantly increased in the liver of old mice. FOXO1 inhibition by AS1842856 significantly alleviated glucose intolerance, hepatic steatosis, and systemic inflammation in old mice. FOXO1 inhibition significantly attenuated aging-induced pro-inflammation in KCs partially through downregulation of ARKC genes. However, FOXO1 inhibition had a limited effect on aging-induced functional quiescence in MDMs. These results indicate that aging induces pro-inflammation in liver mainly through targeting KCs and FOXO1 is a key player in aging-induced pro-inflammation in KCs. Thus, FOXO1 could be a potential therapeutic target for the treatment of age-associated chronic diseases.  相似文献   

17.
Aging inevitably leads to reduced immune function, leaving the elderly more susceptible to infections, less able to respond to pathogen challenges, and less responsive to preventative vaccinations. No cell type is exempt from the ravages of age, and extensive studies have found age‐related alterations in the frequencies and functions of both stem and progenitor cells, as well as effector cells of both the innate and adaptive immune systems. The intrinsic functional reduction in immune competence is also associated with low‐grade chronic inflammation, termed “inflamm‐aging,” which further perpetuates immune dysfunction. While many of these age‐related cellular changes are well characterized, understanding the molecular changes that underpin the functional decline has proven more difficult. Changes in chromatin are increasingly appreciated as a causative mechanism of cellular and organismal aging across species. These changes include increased genomic instability through loss of heterochromatin and increased DNA damage, telomere attrition, and epigenetic alterations. In this review, we discuss the connections between chromatin, immunocompetence, and the loss of function associated with mammalian immune aging. Through understanding the molecular events which underpin the phenotypic changes observed in the aged immune system, it is hoped that the aged immune system can be restored to provide youthful immunity once more.  相似文献   

18.
19.
20.
The connection between aging‐related immune dysfunction and the lung manifestations of aging is poorly understood. A detailed characterization of the aging IL10‐deficient murine lung, a model of accelerated aging and frailty, reconciles features of both immunosenescence and lung aging in a coherent model. Airspace enlargement developed in the middle‐aged (12 months old) and aged (20–22 months old) IL10‐deficient lung punctuated by an expansion of macrophages and alveolar cell apoptosis. Compared to wild‐type (WT) controls, the IL10‐deficient lungs from young (4‐month‐old) mice showed increased oxidative stress which was enhanced in both genotypes by aging. Active caspase 3 staining was increased in the alveolar epithelial cells of aged WT and mutant lungs but was greater in the IL10‐deficient milieu. Lung macrophages were increased in the aged IL10‐deficient lungs with exuberant expression of MMP12. IL10 treatment of naïve and M2‐polarized bone marrow‐derived WT macrophages reduced MMP12 expression. Conditioned media studies demonstrated the secretome of aged mutant macrophages harbors reduced AECII prosurvival factors, specifically keratinocyte growth factor (KGF) and hepatocyte growth factor (HGF), promotes cell death, and reduces survival of primary alveolar epithelial cells. Compared to WT controls, aged IL10‐deficient mice have increased parenchymal lymphoid collections comprised of a reduced number of apoptotic cells and B cells. We establish that IL10 is a key modulator of airspace homeostasis and lymphoid morphogenesis in the aging lung enabling macrophage‐mediated alveolar epithelial cell survival and B‐cell survival within tertiary lymphoid structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号