首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Skeletal muscles are formed from two cell lineages, myogenic and fibroblastic. Mesoderm-derived myogenic progenitors form muscle cells whereas fibroblastic cells give rise to the supportive connective tissue of skeletal muscles, such as the tendons and perimysium. It remains unknown how myogenic and fibroblastic cell-cell interactions affect cell fate determination and the organization of skeletal muscle. In the present study, we investigated the functional significance of cell-cell interactions in regulating skeletal muscle development. Our study shows that cranial neural crest (CNC) cells give rise to the fibroblastic cells of the tongue skeletal muscle in mice. Loss of Tgfbr2 in CNC cells (Wnt1-Cre;Tgfbr2flox/flox) results in microglossia with reduced Scleraxis and Fgf10 expression as well as decreased myogenic cell proliferation, reduced cell number and disorganized tongue muscles. Furthermore, TGF-β2 beads induced the expression of Scleraxis in tongue explant cultures. The addition of FGF10 rescued the muscle cell number in Wnt1-Cre;Tgfbr2flox/flox mice. Thus, TGF-β induced FGF10 signaling has a critical function in regulating tissue-tissue interaction during tongue skeletal muscle development.  相似文献   

4.
BackgroundHeparan sulfate (HS) is a sulfated linear polysaccharide on cell surfaces that plays an important role in physiological processes. HS is present in skeletal muscles but its detailed role in this tissue remains unclear.MethodsWe examined the role of HS in the differentiation of C2C12 cells, a mouse myoblast cell line. We also phenotyped the impact of HS deletion in mouse skeletal muscles on their functions by using Cre-loxP system.ResultsCRISPR-Cas9-dependent HS deletion or pharmacological removal of HS dramatically impaired myoblast differentiation of C2C12 cells. To confirm the importance of HS in vivo, we deleted Ext1, which encodes an enzyme essential for HS biosynthesis, specifically in the mouse skeletal muscles (referred to as mExt1CKO mice). Treadmill and wire hang tests demonstrated that mExt1CKO mice exhibited muscle weakness. The contraction of isolated soleus muscles from mExt1CKO mice was also impaired. Morphological examination of mExt1CKO muscle tissue under light and electron microscopes revealed smaller cross sectional areas and thinner myofibrils. Finally, a model of muscle regeneration following BaCl2 injection into the tibialis anterior muscle of mice demonstrated that mExt1CKO mice had reduced expression of myosin heavy chain and an increased number of centronucleated cells. This indicates that muscle regeneration after injury was attenuated in the absence of HS expression in muscle cells.SignificanceThese results demonstrate that HS plays an important role in skeletal muscle function by promoting differentiation.  相似文献   

5.
6.

Background

Transgenic mice with transient cardiac expression of constitutively active Galpha q (Gαq-TG) exhibt progressive heart failure and ventricular arrhythmias after the initiating stimulus of transfected constitutively active Gαq becomes undetectable. However, the mechanisms are still unknown. We examined the effects of chronic administration of olmesartan on heart failure and ventricular arrhythmia in Gαq-TG mice.

Methodology/Principal Findings

Olmesartan (1 mg/kg/day) or vehicle was chronically administered to Gαq-TG from 6 to 32 weeks of age, and all experiments were performed in mice at the age of 32 weeks. Chronic olmesartan administration prevented the severe reduction of left ventricular fractional shortening, and inhibited ventricular interstitial fibrosis and ventricular myocyte hypertrophy in Gαq-TG. Electrocardiogram demonstrated that premature ventricular contraction (PVC) was frequently (more than 20 beats/min) observed in 9 of 10 vehicle-treated Gαq-TG but in none of 10 olmesartan-treated Gαq-TG. The collected QT interval and monophasic action potential duration in the left ventricle were significantly shorter in olmesartan-treated Gαq-TG than in vehicle-treated Gαq-TG. CTGF, collagen type 1, ANP, BNP, and β-MHC gene expression was increased and olmesartan significantly decreased the expression of these genes in Gαq-TG mouse ventricles. The expression of canonical transient receptor potential (TRPC) 3 and 6 channel and angiotensin converting enzyme (ACE) proteins but not angiotensin II type 1 (AT1) receptor was increased in Gαq-TG ventricles compared with NTG mouse ventricles. Olmesartan significantly decreased TRPC6 and tended to decrease ACE expressions in Gαq-TG. Moreover, it increased AT1 receptor in Gαq-TG.

Conclusions/Significance

These findings suggest that angiotensin II type 1 receptor activation plays an important role in the development of heart failure and ventricular arrhythmia in Gαq-TG mouse model of heart failure.  相似文献   

7.
8.
Regulation of skeletal muscle development requires many of the regulatory networks that are fundamental to developmental myogenesis. ErbB3 binding protein‐1 (Ebp1) is involved in the control of myoblasts development in chicken. However, the expression and biological functions of Ebp1 in the progress of myogenesis are unclear. This study focused on determining the effect of Ebp1 on myogenic proliferation and differentiation using a primary myoblasts culture model. Ebp1 was found to upregulate in proliferating myoblasts and decrease at the early stage of myogenic differentiation. The level of endogenous Ebp1 increased from E9 to E20 chicken leg muscles. Knockdown of Ebp1 had no effect on myoblasts proliferation. However, myogenic differentiation into multinucleated myotubes was significantly reduced. The mRNA and protein expression of MRFs was decreased when Ebp1 was knocked down. Downregulation of Ebp1, accompanied by elevated levels of pSMAD2/3, suggests that Ebp1 is involved in regulating myogenic differentiation via SMAD2/3 inhibition. The phosphorylation of SMAD2/3 was activated and the expression of MYOD and MYOG was reduced in Ebp1 knockdown myoblasts, but addition of LY2109761 (an inhibitor specified to SMAD2/3) blocked these effects. Collectively, these results indicate that Ebp1 promotes myoblast differentiation by inhibition of SMAD2/3 signaling pathway during chicken myogenesis. These data provide new insights into the biological role of Ebp1 in embryonic chicken skeletal muscle development.  相似文献   

9.
Many studies have demonstrated that the calcium-dependent proteolytic system (calpains and calpastatin) is involved in myoblast differentiation. It is also known that myogenic differentiation can be studied in vitro. In the present experiments, using a mouse muscle cell line (C2C12) we have analyzed both the sequences of appearance and the expression profiles of calpains 1, 2, 3 and calpastatin during the course of myoblast differentiation. Our results mainly show that the expression of ubiquitous calpains (calpain 1 and 2) and muscle-specific calpain (calpain 3) at the mRNAs level as well as at the protein level do not change significantly all along this biological process. In the same time, the specific inhibitor of ubiquitous calpains, calpastatin, presents a stable expression at mRNAs level as well as protein level, all along myoblast to myotube transition. A comparison with other myogenic cells is presented.  相似文献   

10.
Myoblast differentiation is an essential process for the control of muscle regeneration. However, the intrinsic mechanisms underlying this dynamic process are still not well clarified. Herein, we identified transglutaminase type 2 (TGM2) as a novel regulator of muscle differentiation and regeneration in vitro and in vivo. Specifically, knockdown of TGM2 suppresses whereas overexpression of TGM2 promotes myoblast differentiation in differentiating C2C12 cells. Mechanistic studies revealed that TGM2 promotes C2C12 myoblast differentiation via enhancing GPR56 mediated activation of the mTOR signaling. Additionally, lentivirus mediated knockdown of TGM2 hinders the regeneration of muscles in a BaCl2 induced skeletal muscle injury model of mice. Finally, we found that both TGM2 and activation of the mTOR signaling are up-regulated in muscles of patients with immune-mediated necrotizing myopathy (IMNM), especially in the regenerating myofibers. Collectively, our research demonstrates that TGM2 positively regulates muscle differentiation and regeneration through facilitating the myogenic mTOR signaling, which might be a potential target of therapy for skeletal muscle injury.  相似文献   

11.
The effects of the inhibitor of DNA methylation 5-azacytidine on stem (satellite) cells isolated from fetal and definitive skeletal muscles of rats lead to the expression of marker genes of cardiomyogenesis (Gata4, Nkx2.5, connexin-43, n-cadherin, as well as Cacna 1 c encoding the cardiac subunit of the L-type Ca2+-channel). Through comparative analysis of the dynamics of expression of key markers of cardiomyogenesis, it was established that satellite cells isolated from fetal muscles have a more expressive potency to cardiomyocyte differentiation in vitro (expression of specific marker genes) compared to cells from muscles of adult animals. In the process of induced cardiomyocyte differentiation, the expression of MyoD and m-cadherin marker genes of skeletal muscle differentiation was not detected, suggesting that in the experiments presented the program of myogenic differentiation of skeletal muscles is inhibited.  相似文献   

12.
13.
The voltage-dependent calcium channel (VDCC) in skeletal muscle probably plays a key role in transducing membrane charge movement to the calcium release channel. We report here that the expression of VDCC α1 and α2 mRNAs is developmentally regulated in differentiating C2Cl2 myogenic cells. The α1 mRNA is not detectable in the myoblast form of C2Cl2 cells while its expression is induced 20-fold in differentiated myotubes. In contrast, the α2 mRNA is weakly expressed in myoblasts but is also induced upon myogenic differentiation.  相似文献   

14.
Ankyrin repeat domain protein 2 (ANKRD2) translocates from the nucleus to the cytoplasm upon myogenic induction. Overexpression of ANKRD2 inhibits C2C12 myoblast differentiation. However, the mechanism by which ANKRD2 inhibits myoblast differentiation is unknown. We demonstrate that the primary myoblasts of mdm (muscular dystrophy with myositis) mice (pMBmdm) overexpress ANKRD2 and ID3 (inhibitor of DNA binding 3) proteins and are unable to differentiate into myotubes upon myogenic induction. Although suppression of either ANKRD2 or ID3 induces myoblast differentiation in mdm mice, overexpression of ANKRD2 and inhibition of ID3 or vice versa is insufficient to inhibit myoblast differentiation in WT mice. We identified that ANKRD2 and ID3 cooperatively inhibit myoblast differentiation by physical interaction. Interestingly, although MyoD activates the Ankrd2 promoter in the skeletal muscles of wild-type mice, SREBP-1 (sterol regulatory element binding protein-1) activates the same promoter in the skeletal muscles of mdm mice, suggesting the differential regulation of Ankrd2. Overall, we uncovered a novel pathway in which SREBP-1/ANKRD2/ID3 activation inhibits myoblast differentiation, and we propose that this pathway acts as a critical determinant of the skeletal muscle developmental program.  相似文献   

15.
Satellite cells/myoblasts account for the majority of muscle regenerative potential in response to injury and muscular adaptation to exercise. Although the ability to influence this process would provide valuable benefits for treating a variety of patients suffering from muscle loss, the regulatory mechanisms of myogenesis are not completely understood. We have tested the hypothesis that transforming growth factor-β-activated kinase 1 (TAK1) is an important regulator of skeletal muscle formation. TAK1 is expressed in proliferating C2C12 myoblasts, and its levels are reduced upon differentiation of myoblasts into myotubes. In vivo, TAK1 is predominantly expressed in developing skeletal muscle of young mice. However, the expression of TAK1 was significantly up-regulated in regenerating skeletal muscle of adult mice. Overexpression of a dominant negative mutant of TAK1 or knockdown of TAK1 inhibited the proliferation and differentiation of C2C12 myoblasts. TAK1 was required for the expression of myogenic regulatory factors in differentiating myoblasts. Genetic ablation of TAK1 also inhibited the MyoD-driven transformation of mouse embryonic fibroblasts into myotubes. Inhibition of TAK1 suppressed the differentiation-associated activation of p38 mitogen-activated protein kinase (MAPK) and Akt kinase. Overexpression of a constitutively active mutant of MAPK kinase 6 (MKK6, an upstream activator of p38 MAPK) but not constitutive active Akt restored the myogenic differentiation in TAK1-deficient mouse embryonic fibroblasts. Insulin growth factor 1-induced myogenic differentiation was also found to involve TAK1. Collectively, our results suggest that TAK1 is an important upstream regulator of skeletal muscle cell differentiation.  相似文献   

16.
Heat-shock protein90 (HSP90) plays an essential role in maintaining stability and activity of its clients. HSP90 is involved in cell differentiation and survival in a variety of cell types. To elucidate the possible role of HSP90 in myogenic differentiation and cell survival, we examined the time course of changes in the expression of myogenic regulatory factors, intracellular signaling molecules, and anti-/pro-apoptotic factors when C2C12 cells were cultured in differentiation condition in the presence of a HSP90-specific inhibitor, geldanamycin. Furthermore, we examined the effects of geldanamycin on muscle regeneration in vivo. Our results showed that geldanamycin inhibited myogenic differentiation with decreased expression of MyoD, myogenin and reduced phosphorylation levels of Akt1. Geldanamycin had little effect on the phosphorylation levels of p38MAPK and ERK1/2 but reduced the phosphorylation levels of JNK. Along with myogenic differentiation, geldanamycin increased apoptotic nuclei with decreased expression of Bcl-2. The skeletal muscles forced to regenerate in the presence of geldanamycin were of poor repair with small regenerating myofibers and increased connective tissues. Together, our findings suggest that HSP90 may modulate myogenic differentiation and may be involved in cell survival.  相似文献   

17.
We analyzed the expression of connexin(Cx)43 in proliferating and differentiating C2C12cells and in myoblasts obtained from newborn mice. Cx43 was present in both cell types and under both conditions. The functional role of gap junctional communication (GJC) during terminal differentiation was evaluated in C2C12myoblasts in the presence or absence of the gap junction blocker 18β-glycyrrhetinic acid (β-GA). Differentiation was temporally analyzed through myogenin expression, activity of creatine kinase (CK), and yield of multinucleated cells. In cells treated with β-GA, the CK activity and myotube formation were reversibly blocked. While in control cultures positive myogenin expression was seen in cell clusters, in β-GA treated cultures the myogenin immunoreactivity was detected in few, preferentially sparse cells. The role of Cx43 during terminal differentiation was evaluated in cultures of myoblasts obtained from Cx43Cre-ER(T)/fltransgenic mice. Inducible deletion of Cx43 was obtained upon activation of Cre-ER(T) via 4-OH-tamoxifen applications. Cx43 deletion led to a drastic decrease in myogenin expression at 24 h of differentiation as compared to myoblasts from control mice. Our results indicate that Cx43-containing gap junctions are required for normal skeletal muscle terminal differentiation. These channels might provide a pathway for the intercellular transfer of signals involved in myogenesis.  相似文献   

18.
Craniofacial and trunk skeletal muscles are evolutionarily distinct and derive from cranial and somitic mesoderm, respectively. Different regulatory hierarchies act upstream of myogenic regulatory factors in cranial and somitic mesoderm, but the same core regulatory network – MyoD, Myf5 and Mrf4 – executes the myogenic differentiation program. Notch signaling controls self-renewal of myogenic progenitors as well as satellite cell homing during formation of trunk muscle, but its role in craniofacial muscles has been little investigated. We show here that the pool of myogenic progenitor cells in craniofacial muscle of Dll1LacZ/Ki mutant mice is depleted in early fetal development, which is accompanied by a major deficit in muscle growth. At the expense of progenitor cells, supernumerary differentiating myoblasts appear transiently and these express MyoD. The progenitor pool in craniofacial muscle of Dll1LacZ/Ki mutants is largely rescued by an additional mutation of MyoD. We conclude from this that Notch exerts its decisive role in craniofacial myogenesis by repression of MyoD. This function is similar to the one previously observed in trunk myogenesis, and is thus conserved in cranial and trunk muscle. However, in cranial mesoderm-derived progenitors, Notch signaling is not required for Pax7 expression and impinges little on the homing of satellite cells. Thus, Dll1 functions in satellite cell homing and Pax7 expression diverge in cranial- and somite-derived muscle.  相似文献   

19.

Background

Beneficial effects of nicorandil on the treatment of hypertensive heart failure (HF) and ischemic heart disease have been suggested. However, whether nicorandil has inhibitory effects on HF and ventricular arrhythmias caused by the activation of G protein alpha q (Gαq) -coupled receptor (GPCR) signaling still remains unknown. We investigated these inhibitory effects of nicorandil in transgenic mice with transient cardiac expression of activated Gαq (Gαq-TG).

Methodology/Principal Findings

Nicorandil (6 mg/kg/day) or vehicle was chronically administered to Gαq-TG from 8 to 32 weeks of age, and all experiments were performed in mice at the age of 32 weeks. Chronic nicorandil administration prevented the severe reduction of left ventricular fractional shortening and inhibited ventricular interstitial fibrosis in Gαq-TG. SUR-2B and SERCA2 gene expression was decreased in vehicle-treated Gαq-TG but not in nicorandil-treated Gαq-TG. eNOS gene expression was also increased in nicorandil-treated Gαq-TG compared with vehicle-treated Gαq-TG. Electrocardiogram demonstrated that premature ventricular contraction (PVC) was frequently (more than 20 beats/min) observed in 7 of 10 vehicle-treated Gαq-TG but in none of 10 nicorandil-treated Gαq-TG. The QT interval was significantly shorter in nicorandil-treated Gαq-TG than vehicle-treated Gαq-TG. Acute nicorandil administration shortened ventricular monophasic action potential duration and reduced the number of PVCs in Langendorff-perfused Gαq-TG mouse hearts. Moreover, HMR1098, a blocker of cardiac sarcolemmal KATP channels, significantly attenuated the shortening of MAP duration induced by nicorandil in the Gαq-TG heart.

Conclusions/Significance

These findings suggest that nicorandil can prevent the development of HF and ventricular arrhythmia caused by the activation of GPCR signaling through the shortening of the QT interval, action potential duration, the normalization of SERCA2 gene expression. Nicorandil may also improve the impaired coronary circulation during HF.  相似文献   

20.
The chemokine-like receptor-1 (CMKLR1) is a G protein-coupled receptor that is activated by chemerin, a secreted plasma leukocyte attractant and adipokine. Previous studies identified that CMKLR1 is expressed in skeletal muscle in a stage-specific fashion during embryogenesis and in adult mice; however, its function in skeletal muscle remains unclear. Based on the established function of CMKLR1 in cell migration and differentiation, we investigated the hypothesis that CMKLR1 regulates the differentiation of myoblasts into myotubes. In C(2)C(12) mouse myoblasts, CMKLR1 expression increased threefold with differentiation into multinucleated myotubes. Decreasing CMKLR1 expression by adenoviral-delivered small-hairpin RNA (shRNA) impaired the differentiation of C(2)C(12) myoblasts into mature myotubes and reduced the mRNA expression of myogenic regulatory factors myogenin and MyoD while increasing Myf5 and Mrf4. At embryonic day 12.5 (E12.5), CMKLR1 knockout (CMKLR1(-/-)) mice appeared developmentally delayed and displayed significantly lower wet weights and a considerably diminished myotomal component of somites as revealed by immunolocalization of myosin heavy chain protein compared with wild-type (CMKLR1(+/+)) mouse embryos. These changes were associated with increased Myf5 and decreased MyoD protein expression in the somites of E12.5 CMKLR1(-/-) mouse embryos. Adult male CMKLR1(-/-) mice had significantly reduced bone-free lean mass and weighed less than the CMKLR1(+/+) mice. We conclude that CMKLR1 is essential for myogenic differentiation of C(2)C(12) cells in vitro, and the CMKLR1 null mice have a subtle skeletal muscle deficit beginning from embryonic life that persists during postnatal life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号