首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As in other poikilotherms, longevity in C. elegans varies inversely with temperature; worms are longer‐lived at lower temperatures. While this observation may seem intuitive based on thermodynamics, the molecular and genetic basis for this phenomenon is not well understood. Several recent reports have argued that lifespan changes across temperatures are genetically controlled by temperature‐specific gene regulation. Here, we provide data that both corroborate those studies and suggest that temperature‐specific longevity is more the rule than the exception. By measuring the lifespans of worms with single modifications reported to be important for longevity at 15, 20, or 25 °C, we find that the effect of each modification on lifespan is highly dependent on temperature. Our results suggest that genetics play a major role in temperature‐associated longevity and are consistent with the hypothesis that while aging in C. elegans is slowed by decreasing temperature, the major cause(s) of death may also be modified, leading to different genes and pathways becoming more or less important at different temperatures. These differential mechanisms of age‐related death are not unlike what is observed in humans, where environmental conditions lead to development of different diseases of aging.  相似文献   

2.
Effects of growth temperature and winter duration on leaf longevity were compared between a spring ephemeral, Gagea lutea, and a forest summergreen forb, Maianthemum dilatatum. The plants were grown at day/night temperatures of 25/20°C and 15/10°C after a chilling treatment for variable periods at 2°C. The temperature regime of 25/20°C was much higher than the mean air temperatures for both species in their native habitats. Warm temperature of 25/20°C and/or long chilling treatment shortened leaf longevity in G. lutea, but not in M. dilatatum. The response of G. lutea was consistent with that reported for other spring ephemerals. Air temperature increases as the vegetative season progresses. The decrease in leaf longevity in G. lutea under warm temperature condition ensures leaf senescence in summer, an unfavorable season for its growth. This also implies that early leaf senescence could occur in years with early summers. Warm spring temperatures have been shown to accelerate the leafing-out of forest trees. The decrease in leaf longevity due to warm temperature helps synchronize the period of leaf senescence roughly with the time of the forest canopy leaf-out. Prolonged winter due to late snowmelt has been shown to shorten the vegetative period for spring ephemerals. The decrease in leaf longevity due to long chilling treatment would correspond with this shortened vegetative period.  相似文献   

3.
Extending lifespan by lowering ambient temperature in the habitat has been shown in a variety of organisms. Its mechanism, however, remains elusive. In this study, we examined the survivorship and the aging process of the annual fish (Nothobranchius rachovii) reared under high (30 °C), moderate (25 °C) and low (20 °C) ambient temperatures. The results showed that low ambient temperatures prolong survivorship, whereas high ambient temperatures shorten survivorship. At low ambient temperature, expression of senescence‐associated β‐galactosidase, lipofuscin, reactive oxygen species, lipid peroxidation, protein oxidation, mitochondrial density and ADP/ATP ratio were reduced compared with those reared at high and moderate temperatures, whereas catalase activity, Mn‐superoxide dismutase activities, mitochondrial membrane potential and the levels of ATP, ADP, Sirt1 and Forkhead box O expression were elevated. The expression levels of Hsp70 and CIRP showed no significant difference under any of the ambient temperatures tested. We concluded that cellular metabolism, energy utilization and gene expression are altered at lower ambient temperature, which is associated with the extension of lifespan of the annual fish.  相似文献   

4.
Growth hormone receptor knockout (GHRKO) mice are remarkably long‐lived and have improved glucose homeostasis along with altered energy metabolism which manifests through decreased respiratory quotient (RQ) and increased oxygen consumption (VO2). Short‐term exposure of these animals to increased environmental temperature (eT) at 30°C can normalize their VO2 and RQ. We hypothesized that increased heat loss in the diminutive GHRKO mice housed at 23°C and the consequent metabolic adjustments to meet the increased energy demand for thermogenesis may promote extension of longevity, and preventing these adjustments by chronic exposure to increased eT will reduce or eliminate their longevity advantage. To test these hypotheses, GHRKO mice were housed at increased eT (30°C) since weaning. Here, we report that contrasting with the effects of short‐term exposure of adult GHRKO mice to 30°C, transferring juvenile GHRKO mice to chronic housing at 30°C did not normalize the examined parameters of energy metabolism and glucose homeostasis. Moreover, despite decreased expression levels of thermogenic genes in brown adipose tissue (BAT) and elevated core body temperature, the lifespan of male GHRKO mice was not reduced, while the lifespan of female GHRKO mice was increased, along with improved glucose homeostasis. The results indicate that GHRKO mice have intrinsic features that help maintain their delayed, healthy aging, and extended longevity at both 23°C and 30°C.  相似文献   

5.
Thermal environments can influence many fitness‐related traits including life span. Here, we assess whether longevity in Drosophila melanogaster can experimentally evolve as a correlated response to cold‐stress selection, and whether genotype‐by‐temperature and sex‐by‐temperature interactions are significant components of variation in life span. Three replicated S lines were cold‐stress selected and compared with their respective unselected controls (Clines) in the 16th generation of thermal selection. Cold‐stress resistance exhibited a substantial direct response to selection, and also showed a significant interaction between sex and type of line. Mean longevity exhibited a significant interaction between adult test temperature (14 and 25 °C) and line (with suggestive evidence for increased longevity of S lines when tested at 14 °C), but there was no evidence for increased longevity in S lines at normal temperatures (i.e. 25 °C). Another temperature‐dependent effect was sex‐specific, with males being the longer lived sex at 25 °C but the less long‐lived sex at 14 °C. Additionally, we tested in an exploratory way the relationship between longevity and cold‐stress resistance by also measuring resistance to a prefreezing temperature before and after one generation of longevity selection at 14 °C (selection intensity, i = 1.47 for S lines, and 1.42 for C lines). In this longevity selection, we found that cold‐stress resistance increased by about 6% in S lines and 18% in C lines. However, taken together, the results indicate no simple relationship between longevity and cold‐stress resistance, with genotype‐by‐sex interactions in both traits. Temperature dependent interaction in longevity is apparent between S and C lines, and sex‐specific variation in mean longevity also depends on temperature.  相似文献   

6.
7.
We tested for variation in longevity, senescence rate and early fecundity of Drosophila buzzatii along an elevational transect in Argentina, using laboratory-reared flies in laboratory tests performed to avoid extrinsic mortality. At 25 °C, females from lowland populations lived longer and had a lower demographic rate of senescence than females from highland populations. Minimal instead of maximal temperature at the sites of origin of population best predicted this cline. A very different pattern was found at higher test temperature. At 29.5 °C, longevity of males increased with altitude of origin of population. No clinal trend was apparent for longevity of females at 29.5 °C. There was evidence for a trade-off between early fecundity and longevity at non-stressful temperature (25 °C) along the altitudinal gradient. This trait association is consistent with evolutionary theories of aging. Population-by-temperature and sex-by-temperature interactions indicate that senescence patterns are expressed in environment specific ways.  相似文献   

8.
The question as to the role that genes play in determining life-span is essentially unresolved. Although it is well documented that genotype influences longevity, this is no way demonstrates that life-span is genetically determined. In the present study we examine five temperature-sensitive mutations for their effect on the aging process. At the permissive temperature (22°C ), the longevity of each mutant strain is comparable to that of wild type. However, at the restrictive temperature (29°C ) the life-span of these mutants is severely curtailed. Using behavior loss as a landmark of adult physiological age, we examined each of these strains for its pattern of behavior loss relative to longevity, and compared each to a wild-type strain. In four of the mutations the pattern of behavior loss relative to longevity was severely altered at one or both temperatures. However, one strain, adl-16tsl displayed a pattern of behavior loss that was indistinguishable from wild type at both 22°C and 29°C. At 29°C not only was the longevity decreased, the pattern of behavior loss was also compressed into a shorter time period. The compression of the pattern of behavior loss was proportional to the reduction in life-span. Thus it appears that this mutation, adl-16tsl, may accelerate the normal aging process when placed at 29°C. The potential utility of these types of mutants for studying the aging process is discussed.  相似文献   

9.
The American lobster is a poikilotherm that inhabits a marine environment where temperature varies over a 25°C range and depends on the winds, the tides and the seasons. To determine how cardiac performance depends on the water temperature to which the lobsters are acclimated we measured lobster heart rates in vivo. The upper limit for cardiac function in lobsters acclimated to 20°C is approximately 29°C, 5°C warmer than that measured in lobsters acclimated to 4°C. Warm acclimation also slows the lobster heart rate within the temperature range from 4 to 12°C. Both effects are apparent after relatively short periods of warm acclimation (3–14 days). However, warm acclimation impairs cardiac function at cold temperatures: following several hours exposure to frigid (<5°C) temperatures heart rates become slow and arrhythmic in warm acclimated, but not cold acclimated, lobsters. Thus, acclimation temperature determines the thermal limits for cardiac function at both extremes of the 25°C temperature range lobsters inhabit in the wild. These observations suggest that regulation of cardiac thermal tolerance by the prevailing environmental temperature protects against the possibility of cardiac failure due to thermal stress.  相似文献   

10.
The G protein‐coupled receptor (GPCR) encoding family of genes constitutes more than 6% of genes in Caenorhabditis elegans genome. GPCRs control behavior, innate immunity, chemotaxis, and food search behavior. Here, we show that C. elegans longevity is regulated by a chemosensory GPCR STR‐2, expressed in AWC and ASI amphid sensory neurons. STR‐2 function is required at temperatures of 20°C and higher on standard Escherichia coli OP50 diet. Under these conditions, this neuronal receptor also controls health span parameters and lipid droplet (LD) homeostasis in the intestine. We show that STR‐2 regulates expression of delta‐9 desaturases, fat‐5, fat‐6 and fat‐7, and of diacylglycerol acyltransferase dgat‐2. Rescue of the STR‐2 function in either AWC and ASI, or ASI sensory neurons alone, restores expression of fat‐5, dgat‐2 and restores LD stores and longevity. Rescue of stored fat levels of GPCR mutant animals to wild‐type levels, with low concentration of glucose, rescues its lifespan phenotype. In all, we show that neuronal STR‐2 GPCR facilitates control of neutral lipid levels and longevity in C. elegans.  相似文献   

11.
12.
Summary

A marine and a freshwater species of Chaetonotida (Gastrotricha) were reared under laboratory conditions. Their life tables and principal demographic parameters were determined at 2 different temperatures (20°and 25°C). At 25°C the data relative to the marine species were collected from 5 cohorts kept at 5 different salinity levels (15, 25, 35, 45, 55°/oo).

A higher temperature increases reproductive activity while shortening its duration in both species, whereas the length of the lifespan remains unaffected. Extreme salinity values (15 and 55°/oo) reduce the maximum longevity of the marine species and have opposite effects on reproductive activity, which is higher at low salinity and becomes lower at high salinity. The postparthenogenetic phase is remarkably long relative to the life cycle: this was observed in all experimental conditions and may be related to the existence of a second reproductive phase, which is hermaphroditic and follows the parthenogenetic one, as recently postulated from morphological data.  相似文献   

13.
14.
The reaction norm linking rearing temperature and size in Drosophila melanogaster results in progressively larger flies as the temperature is lowered from 30°C to 18°C, but it has remained unclear whether this phenotypic plasticity is part of an adaptive response to temperature. We found that female D. melanogaster reared to adulthood at 18°C versus 25°C showed a 12% increase in dry weight. Measurements of the fecundity of these two types of fly showed that the size change had no effect on lifetime fecundity, regardless of the adult test temperature. Thus the phenotypic plasticity breaks the usual positive correlation between body size and fecundity. However, at a given temperature, early fecundity (defined as productivity for days 5 through 12 after eclosion at 25°C and days 7 through 17 at 18°C) was highest when the rearing and test temperatures were the same. The early fecundity advantage due to rearing at the test temperature was 25% at 18°C and 16% at 25°C, a result consistent with the overall phenotypic response to temperature being adaptive. This conclusion is further supported by the finding that the temperature treatments resulted in a trade-off between early fecundity and longevity, a trade-off that parallels the known genetic correlation. Another parallel is that both the temperature-induced and genetic effects are independent of total fecundity. By contrast, within the temperature treatments, the phenotypic correlation between early fecundity and longevity was positive, illustrating the danger of assuming that phenotypic and genetic correlations are similar, or even of the same sign.  相似文献   

15.
The cabbage stem flea beetle, Psylliodes chrysocephala (L.) (Coleoptera: Chrysomelidae), is a major pest of winter oilseed rape. Despite the importance of this pest, detailed information on reproduction to predict risk of crop damage is lacking. This study investigates the effect of temperature on parameters of reproduction, egg development and viability at five constant temperatures. Significant temperature effects were found on the pre‐oviposition period, total number of eggs laid, daily oviposition rate, female longevity, egg‐development rate and viability. The mean length of the pre‐oviposition period ranged from 93.1 days at 4°C to 14.6 days at 20°C. Analysis of total number of eggs laid and daily oviposition rate during female lifespan estimated the highest total number of eggs laid (696 eggs/female) at 16°C and the highest oviposition rate (6.8 eggs/female and day) at 20°C. The daily oviposition rate at 20°C was not significantly higher than 5.4 eggs/female and day at 16°C. Female longevity was significantly longer at 4°C, shorter at 20°C and not significantly different between 8, 12 and 16°C. Estimated 50% survival time of females was 239, 153, 195, 186 and 78 days at 4, 8, 12, 16 and 20°C, respectively. A linear model of egg development at 8–20°C estimated the lower developmental threshold to be 5.1°C and the thermal constant for development 184.9 degree‐days. The percentage of eggs hatching was significantly lower at 4°C than at all other temperatures tested. The estimated mean hatching percentages were 47.3%, 70.0%, 72.4%, 66.2% and 67.9% at 4, 8, 12, 16 and 20°C, respectively. These results can be used to predict the start and intensity of egg‐laying in the autumn and the appearance of larvae in the field from knowledge about time of field invasion and from monitoring the weather.  相似文献   

16.
The mussel Choromytilus meridionalis (Krauss) is a common inhabitant of the intertidal zone on the west coast of the Cape Peninsula, South Africa, and experiences temperatures of between 8°C when immersed by the tide and at least 25°C on exposure to air. The activity of α-amylase extracted from the crystalline style of freshly-collected mussels has a low temperature coefficient of ≈ 1.12 over much of the temperature range experienced in the natural environment. Warm acclimation results in an increase in the α-amylase activity, despite the fact that individual rate: temperature curves for extracts from mussels acclimated to 8, 15 and 22°C have rather low temperature coefficients of 1.14–1.17 between 10 and 20°C. The increase of activity of the α-amylase following warm acclimation may form an integral part of the improved filtration, ingestion and assimilation which is necessary to offset increased metabolic losses during the warm conditions of the summer months.  相似文献   

17.
18.
"Synthetic heat", also known as the heat grill illusion, occurs when contact with spatially adjacent warm and cold stimuli produce a sensation of "heat". This phenomenon has been explained as a painful perception that occurs when warm stimulation inhibits cold-sensitive neurons in the spinothalamic tract (STT), which in turn unmasks activity in the pain pathway caused by stimulation of C-polymodal nociceptors (CPNs). The "unmasking model" was tested in experiment 1 by combining warm (35-40°C) and cool ( &#83 27°C) stimuli that were too mild to stimulate CPNs. After discovering that these temperatures produced nonpainful heat, experiment 2 was designed to determine whether heat could be induced when near-threshold cooling was paired with mild warmth, and whether lowering the base temperature for cooling would increase the noxious (burning, stinging) components of heat for fixed cooling steps of 1-3°C. Cooling by just 1°C from a base temperature of 33°C led to reports of heat on more than 1/3 of trials, and cooling by just 3°C evoked heat on 75% of trials. Lowering the base temperature to 31 or 29°C increased reports of heat and burning but did not produce significant reports of pain. Perception of nonpainful heat at such mild temperatures indicates either that cold-sensitive nociceptors with thresholds very similar to cold fibers innervate hairy skin in humans, or that heat can result from integration of warm fiber and cold fiber activity, perhaps via convergence on nonspecific (e.g., WDR) neurons in the STT.  相似文献   

19.
The growth, lipid content, and fatty acid composition of Aurantiochytrium sp. strain mh0186 at different temperatures were investigated. Strain mh0186 grew well at 15–30°C, but weakly at 10°C. The biomass at 15–30°C was significantly higher than at 10 and 35°C, and the total lipid at 15–35°C was significantly higher than that at 10°C. The amount of DHA in the total fatty acid was highest at 10°C and decreased in response to temperature increase. The content of DHA (mg/g-dry cell weight) at 15–30°C were significantly higher than those at 35°C and those at 15–25°C were significantly higher than those at 10 and 35°C. The DHA yield at 15–35°C was significantly higher than those at 10 and 35°C. Unsaturation of fatty acid was regulated by temperature and was enhanced in response to temperature decrease. The ratio of DHA to DPA varied at different temperatures.  相似文献   

20.
The development, survivorship, longevity, reproduction, and life table parameters of the Asian citrus psyllid, Diaphorina citri Kuwayama were evaluated at 10°C, 15°C, 20°C, 25°C, 28°C, 30°C and 33°C. The populations reared at 10°C and 33°C failed to develop. Between 15°C and 30°C, mean developmental period from egg to adult varied from 49.3 days at 15°C to 14.1 days at 28°C. The low‐temperature developmental thresholds for 1st through 5th instars were estimated at 11.7°C, 10.7°C, 10.1°C, 10.5°C and 10.9°C, respectively. A modified Logan model was used to describe the relationship between developmental rate and temperature. The survival of the 3rd through 5th nymphal instars at 15–28°C was essentially the same. The mean longevity of females increased with decreasing temperature within 15–30°C. The maximal longevity of individual females was recorded 117, 60, 56, 52 and 51 days at 15°C, 20°C, 25°C, 28°C and 30°C, respectively. The average number of eggs produced per female significantly increased with increasing temperature and reached a maximum of 748.3 eggs at 28°C (P<0.001). The population reared at 28°C had the highest intrinsic rate of increased (0.199) and net reproductive rate (292.2); and the shortest population doubling time (3.5 days) and mean generation time (28.6 days) compared with populations reared at 15–25°C. The optimum range of temperatures for D. citri population growth was 25–28°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号