共查询到20条相似文献,搜索用时 0 毫秒
1.
Sexual selection has been invoked as a major force in the evolution of secondary sexual traits, including sexually dimorphic colourations. For example, previous studies have shown that display complexity and elaborate ornamentation in lizards are associated with variables that reflect the intensity of intrasexual selection. However, these studies have relied on techniques of colour analysis based on human – rather than lizard – visual perception. Here, we use reflectance spectrophotometry and visual modelling to quantify sexual dichromatism considering the overall colour patterns of lacertids, a lizard clade in which visual signalling has traditionally been underrated. These objective methods of colour analysis reveal a large, previously unreported, degree of sexual dichromatism in lacertids. Using a comparative phylogenetic approach, we further demonstrate that sexual dichromatism is positively associated with body size dimorphism (an index of intrasexual selection), suggesting that conspicuous coloration in male lacertids has evolved to improve opponent assessment under conditions of intense male–male competition. Our findings provide the first evidence for the covariation of sexual dichromatism and sexual size dimorphism in lacertids and suggest that the prevalent role of intrasexual selection in the evolution of ornamental coloration is not restricted to the iguanian lineage, but rather may be a general trend common to many diurnal lizards. 相似文献
2.
Adult static intraspecific allometry of tooth size was evaluated in a sample of 66 Otolemur crassicaudatus (34 male, 32 female). Tooth areas were calculated from mesiodistal and buccolingual measurements of canines and postcanine teeth of both arcades and were scaled to four viscerocranial measurements: bimaxillary width; maxillo-alveolar length; mandibular length and bigonial width. Individual tooth crown areas were also scaled to total skull length, body length and body weight. From the log-transformed analyses it is concluded that postcanine tooth size was unrelated to body length or weight, and poorly correlated to skull length or jaw size. Although viscerocranial size appears to be independent of body size, these measures are well correlated to skull length. It is shown that the longer the skull, the shorter and narrower the maxilla, and the longer and broader the mandible. Canines are shown to scale negatively allometric to skull length, hence, large animals will have relatively small canines. 相似文献
3.
Sexually dimorphic eggs, nestling growth and sibling competition in American Kestrels Falco sparverius 总被引:1,自引:0,他引:1
1. American Kestrel ( Falco sparverius ) nestlings are sexually dimorphic, with daughters larger than sons. The larger daughters have an advantage during sibling competition for food in excess of their higher per capita food requirements, and we predicted that parents would reduce this competitive disparity by differentially enhancing the growth of sons, specifically by laying them in larger eggs.
2. In a captive breeding population, eggs producing sons were significantly larger than eggs producing daughters; laying order effects were controlled.
3. The influence of sibling egg size ratios on post-natal size relationships persisted through the nesting period, providing parents with a tool to manipulate size-related phenomena in their offspring. 相似文献
2. In a captive breeding population, eggs producing sons were significantly larger than eggs producing daughters; laying order effects were controlled.
3. The influence of sibling egg size ratios on post-natal size relationships persisted through the nesting period, providing parents with a tool to manipulate size-related phenomena in their offspring. 相似文献
4.
Extravagant secondary sexual characters show sexual size dimorphismin some species but are completely sex limited in others. Sexualornamentation has been hypothesized to benefit mainly malesthrough sexual selection, but the costs of secondary sexualcharacters initially would be experienced by both sexes. Theevolution of sexual size dimorphism of ornaments and, eventually,the complete sex-limited expression of these characters, willdepend on the effects of sexual and natural selection on thetwo sexes. A phylogenetic analysis controlling for similaritiesdue to common ancestry of 60 independent evolutionary originsof feather ornamentation in birds was used to investigate ecologicalfactors correlated with sexual size dimorphism and sex-limitedexpression of secondary sexual characters. When the size ofan ornament is large relative to body size, the trait willbe particularly costly for females, resulting in selectionfor increased sexual size dimorphism of the ornament. Indeed,sexual size dimorphism of ornaments was positively relatedto the relative size of male ornaments but was unrelated torelative size of female ornaments. Species with polygynousand lekking mating systems with little or no male parentalcare (in particular nest building and incubation) demonstratedsex-limited expression of ornaments as compared to monogamousspecies. Species with no food provisioning of offspring by themale showed a trend for increased sexual size dimorphism ofornaments. Therefore, large natural selection costs duringreproduction imposed by the expression of secondary sexualcharacters are related to the evolution of sexual size dimorphismof ornaments and eventually their complete loss from females. 相似文献
5.
Major theories compete to explain the macroevolutionary trends observed in sexual size dimorphism (SSD) in animals. Quantitative genetic theory suggests that the sex under historically stronger directional selection will exhibit greater interspecific variance in size, with covariation between allometric slopes (male to female size) and the strength of SSD across clades. Rensch''s rule (RR) also suggests a correlation, but one in which males are always the more size variant sex. Examining free-living pelagic and parasitic Copepoda, we test these competing predictions. Females are commonly the larger sex in copepod species. Comparing clades that vary by four orders of magnitude in their degree of dimorphism, we show that isometry is widespread. As such we find no support for either RR or for covariation between allometry and SSD. Our results suggest that selection on both sexes has been equally important. We next test the prediction that variation in the degree of SSD is related to the adult sex ratio. As males become relatively less abundant, it has been hypothesized that this will lead to a reduction in both inter-male competition and male size. However, the lack of such a correlation across diverse free-living pelagic families of copepods provides no support for this hypothesis. By comparison, in sea lice of the family Caligidae, there is some qualitative support of the hypothesis, males may suffer elevated mortality when they leave the host and rove for sedentary females, and their female-biased SSD is greater than in many free-living families. However, other parasitic copepods which do not appear to have obvious differences in sex-based mate searching risks also show similar or even more extreme SSD, therefore suggesting other factors can drive the observed extremes. 相似文献
6.
The Australian wolf spider genus Hoggicosa Roewer, 1960 with the type species Hoggicosa errans (Hogg, 1905) is revised to include ten species: Hoggicosa alfi sp. nov. ; Hoggicosa castanea (Hogg, 1905) comb. nov. (= Lycosa errans Hogg, 1905 syn. nov. ; = Lycosa perinflata Pulleine, 1922 syn. nov. ; = Lycosa skeeti Pulleine, 1922 syn. nov. ); Hoggicosa bicolor (McKay, 1973) comb. nov. ; Hoggicosa brennani sp. nov. ; Hoggicosa duracki (McKay, 1975) comb. nov. ; Hoggicosa forresti (McKay, 1973) comb. nov. ; Hoggicosa natashae sp. nov. ; Hoggicosa snelli (McKay, 1975) comb. nov. ; Hoggicosa storri (McKay, 1973) comb. nov. ; and Hoggicosa wolodymyri sp. nov. The Namibian Hoggicosa exigua Roewer, 1960 is transferred to Hogna, Hogna exigua (Roewer, 1960) comb. nov. A phylogenetic analysis including nine Hoggicosa species, 11 lycosine species from Australia and four from overseas, with Arctosa cinerea Fabricius, 1777 as outgroup, supported the monophyly of Hoggicosa, with a larger distance between the epigynum anterior pockets compared to the width of the posterior transverse part. The analysis found that an unusual sexual dimorphism for wolf spiders (females more colourful than males), evident in four species of Hoggicosa, has evolved multiple times. Hoggicosa are burrowing lycosids, several constructing doors from sand or debris, and are predominantly found in semi‐arid to arid regions of Australia. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 158 , 83–123. 相似文献
7.
Andrew G. Hirst Curtis R. Horne David Atkinson 《Proceedings. Biological sciences / The Royal Society》2015,282(1820)
Sexual size dimorphism (SSD) is often affected by environmental conditions, but the effect of temperature on SSD in ectotherms still requires rigorous investigation. We compared the plastic responses of size-at-maturity to temperature between males and females within 85 diverse arthropod species, in which individuals of both sexes were reared through ontogeny under identical conditions with excess food. We find that the sexes show similar relative (proportional) temperature–body size (T–S) responses on average. The high degree of similarity occurs despite an analysis that includes a wide range of animal body sizes, variation in degree of SSD and differences in the sign of the T–S response. We find no support for Rensch''s rule, which predicts greater variation in male size, or indeed the reverse, greater female size variation. SSD shows no systematic temperature dependence in any of the 17 arthropod orders examined, five of which (Diptera, Orthoptera, Lepidoptera, Coleoptera and Calanoida) include more than six thermal responses. We suggest that the same proportional T–S response may generally have equivalent fitness costs and benefits in both sexes. This contrasts with effects of juvenile density, and food quantity/quality, which commonly result in greater size plasticity in females, suggesting these variables have different adaptive effects on SSD. 相似文献
8.
Patrick J. Weatherhead 《Journal of Field Ornithology》2012,83(1):17-25
ABSTRACT Multiple factors potentially affect nestling survival and maternal reproductive success. However, little is known about the relative importance of different factors when operating simultaneously or whether the same factors are important for nestlings and their mothers. We determined the effect of hatching asynchrony, individual egg size, mean egg size, nestling sex, and clutch initiation date on the survival of individual nestlings and on maternal reproductive success in Common Grackles (Quiscalus quiscula) from 2004 to 2006 in central Illinois. Factors most important to maternal success differed from those important for individual nestling growth and survival. Hatching asynchrony had the greatest within‐nest influence on the fate of nestlings; the earlier a nestling hatched relative to siblings, the greater its mass and likelihood of fledging. Clutch size had the greatest influence on maternal reproductive success, with females with larger clutches fledging more young. Thus, both nestling survival and maternal success were largely determined by a single, albeit different, factor. A possible explanation for the apparent unimportance of most factors we measured in determining maternal success is that we did not consider variation among females. Individual variation in maternal attributes such as condition, size, age, experience, or mate quality may result in females tailoring clutch attributes (i.e., egg size, sex, and degree of hatching asynchrony) in ways that allow them to maximize their reproductive success. The discordance between factors that benefited mothers versus their offspring illustrates the importance of considering the maternal consequences of any factor that appears to affect offspring survival. Factors that increase the mass and survival of some offspring may not result in increased maternal reproductive success. 相似文献
9.
In six species of dimorphic raptors (females larger than males)and one passerine (males larger than females), the sex ratioat fledging varied systematically with brood size at fledging.In all species the strongest bias toward the smaller sex wasestablished in the largest as well as the smallest broods; amore even distribution of males and females was observed inbroods of intermediate size. We explored a specific differentialmortality explanation for this sex ratio variation. Our hypothesispostulates that variation in mortality is caused by differencesin food demand between broods of the same size, due to theirsex composition. Data from the marsh harrier Circus aeruginosuson gender-related food demand and overall nestling mortalitywere used to predict the frequency of surviving males and femalesat fledging, assuming an even sex ratio at hatching and randommortality with respect to both sexes within broods. The modelquantitatively fits the marsh harrier data well, especiallyin broods originating from large dutches. Although we anticipatethat other mechanisms are also involved, the results supportthe hypothesis of sex-ratio-dependent mortality, differentialbetween broods, as the process generating the observed brood-sizedependence of fledgling sex ratios in sexually dimorphic birds. 相似文献
10.
11.
Artificially selected qualities can reduce fitness in a wild setting, thus feral domesticates should experience strong selective forces. Domestic sheep Ovis aries have frequently become feral on islands, which differ substantially from mainland environments. We examined changes in body mass and wool traits in feral sheep inhabiting Santa Cruz Island (SCI), California for ≥90 years. To elucidate the influence of nutrition, we compared the mass of feral island sheep with that of island sheep raised in farm conditions. We found that feral sheep on SCI were smaller than purported founder breeds, and that most documented populations of insular feral sheep worldwide have converged to similar body sizes (within 6 kg). SCI rams attained greater mass in farm conditions but ewes did not, suggesting phenotypic plasticity in ram body mass. Ewes exhibited self-shedding of wool at a greater frequency than rams, and sex differences and shedding patterns were consistent with thermoregulation and the risk of fly strike disease as benefits of wool loss. Pigmentation rates did not increase, further supporting the influence of heat stress on wool traits. These changes occurred in <25 generations and may have had a genetic basis, representing a potential example of rapid evolution in insular feral sheep. 相似文献
12.
Badyaev AV Hill GE Whittingham LA 《Evolution; international journal of organic evolution》2001,55(12):2534-2549
Differences among taxa in sexual size dimorphism of adults can be produced by changes in distinct developmental processes and thus may reflect different evolutionary histories. Here we examine whether divergence in sexual dimorphism of adults between recently established Montana and Alabama populations of the house finch (Carpodacus mexicanus) can be attributed to population differences in growth of males and females. In both populations, males and females were similar at hatching, but as a result of sex-specific growth attained sexual size dimorphism by the time of independence. Timing and extent of growth varied between the sexes: Females maintained maximum rates of growth for a longer time than males, whereas males had higher initial growth rates and achieved maximum growth earlier and at smaller sizes than females. Ontogeny of sexual dimorphism differed between populations, but in each population, sexual dimorphism in growth parameters and sexual dimorphism at the time of nest leaving were similar to sexual dimorphism of adults. Variation in growth of females contributed more to population divergence than did growth of males. In each population, we found close correspondence between patterns of sexual dimorphism in growth and population divergence in morphology of adults: Traits that were the most sexually dimorphic in growth in each population contributed the most to population divergence in both sexes. We suggest that sex-specific expression of phenotypic and genetic variation throughout the ontogeny of house finches can result in different responses to selection between males and females of the same age, and thus produce fast population divergence in the sexual size dimorphism. 相似文献
13.
Robert C. St. Clair 《Oecologia》1998,115(4):501-507
An adaptive explanation for environmental sex determination is that it promotes sexual size dimorphism when larger size benefits
one sex more than the other. That is, if growth rates are determined by environment during development, then it is beneficial
to match developmental environment to the sex that benefits more from larger size. However, larger size may also be a consequence
of larger size at hatching or growing for a longer time, i.e., delayed age at first reproduction. Therefore, the adaptive
significance of sexual size dimorphism and environmental sex determination can only be interpreted within the context of both
growth and maturation. In addition, in those animals that continue to grow after maturation, sexual size dimorphism at age
of first reproduction could differ from sexual size dimorphism at later ages as growth competes for energy with reproduction
and maintenance. I compared growth using annuli on carapace scales in two species of box turtles (Terrapene carolina and T. ornata) that have similar patterns of environmental sex determination but, reportedly, have different patterns of sexual size dimorphism.
In the populations I studied, sexual size dimorphism was in the same direction in both species; adult females were, on average,
larger than adult males. This was due in part to males maturing earlier and therefore at smaller sizes than females. In spite
of similar patterns of environmental sex determination, patterns of growth differed between the species. In T. carolina, males grew faster than females as juveniles but females had the larger asymptotic size. In T. ornata, males and females grew at similar rates and had similar asymptotic sizes. Sexual size dimorphism was greatest at maturation
because, although males matured younger and smaller, they grew more as adults. There was, therefore, no consistent pattern
of faster growth for females that may be ascribed to developmental temperature.
Received: 20 March 1996 / Accepted: 10 March 1998 相似文献
14.
Abstract. 1. In arthropods, the evolution of sexual size dimorphism (SSD) may be constrained by a physiological limit on growth within each particular larval instar. A high SSD could, however, be attained if the larvae of the larger sex pass through a higher number of larval instars.
2. Based on a survey of published case studies, the present review shows that sex-related difference in the number of instars is a widespread phenomenon among insects. In the great majority of species with a sexually dimorphic instar number, females develop through a higher number of instars than males.
3. Female-biased sexual dimorphism in final sizes in species with sexually dimorphic instar number was found to considerably exceed a previously estimated median value of SSD for insects in general. This suggests a causal connection between high female-biased SSD, and additional instars in females. Adding an extra instar to larval development allows an insect to increase its adult size at the expense of prolonged larval development.
4. As in the case of additional instars, SSD is fully formed late in ontogeny, larval growth schedules and imaginal sizes can be optimised independently. No conflict between selective pressures operating in juvenile and adult stages is therefore expected.
5. In most species considered, the number of instars also varied within the sexes. Phenotypic plasticity in instar number may thus be a precondition for a sexual difference in instar number to evolve. 相似文献
2. Based on a survey of published case studies, the present review shows that sex-related difference in the number of instars is a widespread phenomenon among insects. In the great majority of species with a sexually dimorphic instar number, females develop through a higher number of instars than males.
3. Female-biased sexual dimorphism in final sizes in species with sexually dimorphic instar number was found to considerably exceed a previously estimated median value of SSD for insects in general. This suggests a causal connection between high female-biased SSD, and additional instars in females. Adding an extra instar to larval development allows an insect to increase its adult size at the expense of prolonged larval development.
4. As in the case of additional instars, SSD is fully formed late in ontogeny, larval growth schedules and imaginal sizes can be optimised independently. No conflict between selective pressures operating in juvenile and adult stages is therefore expected.
5. In most species considered, the number of instars also varied within the sexes. Phenotypic plasticity in instar number may thus be a precondition for a sexual difference in instar number to evolve. 相似文献
15.
《Zoology (Jena, Germany)》2015,118(4):248-254
Sexual dimorphism in shape and size is widespread across animal taxa and arises when natural or sexual selection operates differently on the sexes. Male and female common geckos (Woodworthia maculatus; formerly Hoplodactylus maculatus) in New Zealand do not appear to experience different viability selection pressure, nor do males appear to be under intense pre-copulatory sexual selection. It was therefore predicted that this species would be sexually monomorphic with regard to body size and the size and shape of the head. In line with the prediction, there was no sexual difference in head width, depth, or length or in lateral head shape. However, contrary to prediction, males had a larger body and lateral head size than females. This study suggests that males, at least on Maud Island, NZ, might be under stronger pre-copulatory sexual selection than previously recognized and thus have evolved larger heads (i.e. lateral head size) for use in male combat for females. Allometric scaling patterns do not differ between the sexes and suggest that head width and depth are under directional selection whereas lateral head size is under stabilizing selection. Diet ecology – an agent of natural selection common to both sexes – is likely largely responsible for the observed patterns of head size and shape and the lack of sexual dimorphism in them. 相似文献
16.
Size matters: competition between male and female great tit offspring 总被引:14,自引:2,他引:14
Kate R. Oddie 《The Journal of animal ecology》2000,69(5):903-912
17.
Badyaev AV Whittingham LA Hill GE 《Evolution; international journal of organic evolution》2001,55(1):176-189
Sexual size dimorphism of adults proximately results from a combination of sexually dimorphic growth patterns and selection on growing individuals. Yet, most studies of the evolution of dimorphism have focused on correlates of only adult morphologies. Here we examined the ontogeny of sexual size dimorphism in an isolated population of the house finch (Carpodacus mexicanus). Sexes differed in growth rates and growth duration; in most traits, females grew faster than males, but males grew for a longer period. Sexual dimorphism in bill traits (bill length, width, depth) and in body traits (wing, tarsus, and tail length; mass) developed during different periods of ontogeny. Growth of bill traits was most different between sexes during the juvenile period (after leaving the nest), whereas growth of body traits was most sexually dimorphic during the first few days after hatching. Postgrowth selection on juveniles strongly influenced sexual dimorphism in all traits; in some traits, this selection canceled or reversed dimorphism patterns produced by growth differences between sexes. The net result was that adult sexual dimorphism, to a large degree, was an outcome of selection for survival during juvenile stages. We suggest that previously documented fast and extensive divergence of house finch populations in sexual size dimorphism may be partially produced by distinct environmental conditions during growth in these populations. 相似文献
18.
VIRGINIA SALAVERT CARMEN ZAMORA‐MUÑOZ MAGDALENA RUIZ‐RODRÍGUEZ JUAN J. SOLER 《Ecological Entomology》2011,36(3):389-395
1. The effect of mating success, female fecundity and survival probability associated with intra‐sex variation in body size was studied in Mesophylax aspersus, a caddisfly species with female‐biased sexual size dimorphism, which inhabits temporary streams and aestivates in caves. Adults of this species do not feed and females have to mature eggs during aestivation. 2. Thus, females of larger size should have a fitness advantage because they can harbour more energy reserves that could influence fecundity and probability of survival until reproduction. In contrast, males of smaller size might have competitive advantages over others in mating success. 3. These hypotheses were tested by comparing the sex ratio and body size of individuals captured before and after the aestivation period. The associations between body size and female fecundity, and between mating success and body size of males, were explored under laboratory conditions. 4. During the aestivation period, the sex ratio changed from 1 : 1 to male biased (4 : 1), and a directional selection on body size was detected for females but not for males. Moreover, larger clutches were laid by females of larger size. Finally, differences in mating success between small and large males were not detected. These results suggest that natural selection (i.e. the differential mortality of females associated with body size) together with possible fecundity advantages, are important factors responsible of the sexual size dimorphism of M. aspersus. 5. These results highlight the importance of taking into account mechanisms other than those traditionally used to explain sexual dimorphism. Natural selection acting on sources of variation, such as survival, may be as important as fecundity and sexual selection in driving the evolution of sexual size dimorphism. 相似文献
19.
In several groups in the order Charadriformes, biparental care is followed by a period of male‐only care. Several hypotheses attempting to explain extended male parental care in shorebirds do not fit the Alcini. In a previous study of Brünnich’s Guillemots Uria lomvia and Razorbills Alca torda, we did not find support for female‐biased parental effort at the breeding site that would lead to males being in better condition to care for chicks at sea. However, in both species, males spent more off‐duty time at the breeding site than females, suggesting greater involvement in the defence of egg or chick, breeding site and mate. We predicted that there would be a male bias in size and aggressive behaviour associated with parental roles. To test this, body size and aggression of attending male and female Brünnich’s Guillemots and Razorbills were measured during incubation and brooding on the Gannet Islands, Labrador. Parental aggression was measured using natural observations of all agonistic interactions and, in Razorbills only, in situ responses to presentations of a predator model. In both species, males were significantly larger than females in culmen and gape length. Guillemot males initiated agonistic interactions more frequently than females during incubation. In contrast, female Guillemots were subjected to aggression more frequently than males and as a result were involved in more fights. In addition, the few chicks that were seen to die were being attended by single females. During the brooding period, Razorbill males responded aggressively to intruders more frequently than females, made more aggressive responses than females, and responded aggressively more frequently and more intensely than females to a predator model. In both species there was a similar male bias in morphology and behaviour that is consistent with male parents being more capable of protecting their chick, a probable advantage to chick survival during the uniparental care phase of some Charadriformes. 相似文献
20.
Hypotheses for the adaptive significance of extreme female-biased sexual size dimorphism (SSD) generally assume that in dimorphic species males rarely interfere with each other. Here we provide the first multivariate examination of sexual selection because of male-male competition over access to females in a species with 'dwarf' males, the orb-weaving spider Argiope aurantia. Male A. aurantia typically try to mate opportunistically during the female's final moult when she is defenceless. We show that, contrary to previous hypotheses, the local operational sex ratio (males per female on the web) is male-biased most of the season. Both interference and scramble competition occur during opportunistic mating, the former leading to significant selection for large male body size. Male condition and leg length had no effect on mating success independent of size. We discuss these findings in the context of the evolution of extreme female-biased SSD in this clade. 相似文献