首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The early secretory pathway and autophagy are two essential and evolutionarily conserved endomembrane processes that are finely interlinked. Although growing evidence suggests that intracellular trafficking is important for autophagosome biogenesis, the molecular regulatory network involved is still not fully defined. In this study, we demonstrate a crucial effect of the COPII vesicle‐related protein TFG (Trk‐fused gene) on ULK1 puncta number and localization during autophagy induction. This, in turn, affects formation of the isolation membrane, as well as the correct dynamics of association between LC3B and early ATG proteins, leading to the proper formation of both omegasomes and autophagosomes. Consistently, fibroblasts derived from a hereditary spastic paraparesis (HSP) patient carrying mutated TFG (R106C) show defects in both autophagy and ULK1 puncta accumulation. In addition, we demonstrate that TFG activity in autophagy depends on its interaction with the ATG8 protein LC3C through a canonical LIR motif, thereby favouring LC3C‐ULK1 binding. Altogether, our results uncover a link between TFG and autophagy and identify TFG as a molecular scaffold linking the early secretion pathway to autophagy.  相似文献   

2.
Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disorder characterized by progressive eyelid drooping, swallowing difficulties and proximal limb weakness. The autosomal dominant form of this disease is caused by a polyalanine expansion from 10 to 12-17 residues, located at the N-terminus of the poly(A)-binding protein nuclear 1 (PABPN1). A distinct pathological hallmark of OPMD is the presence of filamentous intranuclear aggregates in patients' skeletal muscle cells. Wildtype PABPN1 protein is expressed ubiquitously and was shown to be mostly concentrated in discrete nuclear domains called 'speckles'. Using an established cell- culture model, we show that most mutant PABPN1- positive (alanine expanded form) intranuclear aggregates are structures distinct from intranuclear speckles. In contrast, the promyelocytic leukaemia protein, a major component of nuclear bodies, strongly colocalized to intranuclear aggregates of mutant PABPN1. Wildtype PABPN1 can freely shuttle between the nucleus and cytoplasm. We determined whether the nuclear environment is necessary for mutant PABPN1 inclusion formation and cellular toxicity. This was achieved by inactivating the mutant PABPN1 nuclear localization signal and by generating full-length mutant PABPN1 fused to a strong nuclear export sequence. A green fluorescence protein tag inserted at the N-terminus of both wildtype PABPN1 (ala10) and mutant PABPN1 (ala17) proteins allowed us to visualize their subcellular localization. Targeting mutant PABPN1 to the cytoplasm resulted in a significant suppression of both intranuclear aggregates formation and cellular toxicity, two histological consequences of OPMD. Our results indicate that the nuclear localization of mutant PABPN1 is crucial to OPMD pathogenesis.  相似文献   

3.
Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset syndrome characterized by progressive degeneration of particular muscles. OPMD is caused by short GCG repeat expansions within the gene encoding the nuclear poly(A)-binding protein 1 (PABPN1) that extend an N-terminal polyalanine tract in the protein. Mutant PABPN1 aggregates as nuclear inclusions in OMPD patient muscles. We have created a Drosophila model of OPMD that recapitulates the features of the human disorder: progressive muscle degeneration, with muscle defects proportional to the number of alanines in the tract, and formation of PABPN1 nuclear inclusions. Strikingly, the polyalanine tract is not absolutely required for muscle degeneration, whereas another domain of PABPN1, the RNA-binding domain and its function in RNA binding are required. This demonstrates that OPMD does not result from polyalanine toxicity, but from an intrinsic property of PABPN1. We also identify several suppressors of the OPMD phenotype. This establishes our OPMD Drosophila model as a powerful in vivo test to understand the disease process and develop novel therapeutic strategies.  相似文献   

4.
5.
Autophagy is a membrane-mediated intracellular degradation system. The serine/threonine kinase Atg1 plays an essential role in autophagosome formation. However, the role of the mammalian Atg1 homologues UNC-51-like kinase (ULK) 1 and 2 are not yet well understood. We found that murine ULK1 and 2 localized to autophagic isolation membrane under starvation conditions. Kinase-dead alleles of ULK1 and 2 exerted a dominant-negative effect on autophagosome formation, suggesting that ULK kinase activity is important for autophagy. We next screened for ULK binding proteins and identified the focal adhesion kinase family interacting protein of 200 kD (FIP200), which regulates diverse cellular functions such as cell size, proliferation, and migration. We found that FIP200 was redistributed from the cytoplasm to the isolation membrane under starvation conditions. In FIP200-deficient cells, autophagy induction by various treatments was abolished, and both stability and phosphorylation of ULK1 were impaired. These results suggest that FIP200 is a novel mammalian autophagy factor that functions together with ULKs.  相似文献   

6.
Macroautophagy/autophagy is an evolutionarily conserved cellular process whose induction is regulated by the ULK1 protein kinase complex. The subunit ATG13 functions as an adaptor protein by recruiting ULK1, RB1CC1 and ATG101 to a core ULK1 complex. Furthermore, ATG13 directly binds both phospholipids and members of the Atg8 family. The central involvement of ATG13 in complex formation makes it an attractive target for autophagy regulation. Here, we analyzed known interactions of ATG13 with proteins and lipids for their potential modulation of ULK1 complex formation and autophagy induction. Targeting the ATG101-ATG13 interaction showed the strongest autophagy-inhibitory effect, whereas the inhibition of binding to ULK1 or RB1CC1 had only minor effects, emphasizing that mutations interfering with ULK1 complex assembly do not necessarily result in a blockade of autophagy. Furthermore, inhibition of ATG13 binding to phospholipids or Atg8 proteins had only mild effects on autophagy. Generally, the observed phenotypes were more severe when autophagy was induced by MTORC1/2 inhibition compared to amino acid starvation. Collectively, these data establish the interaction between ATG13 and ATG101 as a promising target in disease-settings where the inhibition of autophagy is desired.  相似文献   

7.
A broad range of degenerative diseases is associated with intracellular inclusions formed by toxic, aggregation-prone mutant proteins. Intranuclear inclusions constitute a pathological hallmark of oculopharyngeal muscular dystrophy (OPMD), a dominantly inherited disease caused by (GCG) repeat expansions in the gene that encodes for nuclear poly(A) binding protein (PABPN1). The mutation results in an extended polyalanine stretch that has been proposed to induce protein aggregation and formation of intranuclear inclusions. Here we show that normal PABPN1 is inherently aggregation-prone when exogenously expressed in either HeLa or myogenic C2 cells. Similar deposits of insoluble PABPN1 are formed by variant forms of the protein containing either a polyalanine expansion or a complete deletion of the polyalanine tract, indicating that the mutation responsible for OPMD is not essential for formation of PABPN1 inclusions. In contrast, interfering with any of the protein domains required for stimulation of poly(A) polymerase prevents the formation of inclusions. Most surprisingly, photobleaching experiments reveal that both normal and expanded PABPN1 molecules are not irreversibly sequestered into aggregates, but rather move rapidly in and out of the inclusions. These findings have important implications for the interpretation of OPMD model systems based on exogenous expression of PABPN1.  相似文献   

8.
Oculopharyngeal muscular dystrophy (OPMD), a late-onset disorder characterized by progressive degeneration of specific muscles, results from the extension of a polyalanine tract in poly(A) binding protein nuclear 1 (PABPN1). While the roles of PABPN1 in nuclear polyadenylation and regulation of alternative poly(A) site choice are established, the molecular mechanisms behind OPMD remain undetermined. Here, we show, using Drosophila and mouse models, that OPMD pathogenesis depends on affected poly(A) tail lengths of specific mRNAs. We identify a set of mRNAs encoding mitochondrial proteins that are down-regulated starting at the earliest stages of OPMD progression. The down-regulation of these mRNAs correlates with their shortened poly(A) tails and partial rescue of their levels when deadenylation is genetically reduced improves muscle function. Genetic analysis of candidate genes encoding RNA binding proteins using the Drosophila OPMD model uncovers a potential role of a number of them. We focus on the deadenylation regulator Smaug and show that it is expressed in adult muscles and specifically binds to the down-regulated mRNAs. In addition, the first step of the cleavage and polyadenylation reaction, mRNA cleavage, is affected in muscles expressing alanine-expanded PABPN1. We propose that impaired cleavage during nuclear cleavage/polyadenylation is an early defect in OPMD. This defect followed by active deadenylation of specific mRNAs, involving Smaug and the CCR4-NOT deadenylation complex, leads to their destabilization and mitochondrial dysfunction. These results broaden our understanding of the role of mRNA regulation in pathologies and might help to understand the molecular mechanisms underlying neurodegenerative disorders that involve mitochondrial dysfunction.  相似文献   

9.
Autophagy is a lysosome‐dependent degradation pathway essential to maintain cellular homeostasis. Therefore, either defective or excessive autophagy may be detrimental for cells and tissues. The past decade was characterized by significant advances in molecular dissection of stimulatory autophagy inputs; however, our understanding of the mechanisms that restrain autophagy is far from complete. Here, we describe a negative feedback mechanism that limits autophagosome biogenesis based on the selective autophagy‐mediated degradation of ATG13, a component of the ULK1 autophagy initiation complex. We demonstrate that the centrosomal protein OFD1 acts as bona fide autophagy receptor for ATG13 via direct interaction with the Atg8/LC3/GABARAP family of proteins. We also show that patients with Oral‐Facial‐Digital type I syndrome, caused by mutations in the OFD1 gene, display excessive autophagy and that genetic inhibition of autophagy in a mouse model of the disease, significantly ameliorates polycystic kidney, a clinical manifestation of the disorder. Collectively, our data report the discovery of an autophagy self‐regulated mechanism and implicate dysregulated autophagy in the pathogenesis of renal cystic disease in mammals.  相似文献   

10.
《Autophagy》2013,9(1):85-87
The yeast serine threonine kinase Atg1 appears to be a key regulator of autophagy and its kinase activity is crucial for autophagy induction. Recent reports have indicated that a mammalian Atg1 homolog, UNC-51-like kinase (ULK) 1, is required for autophagy. We found that ULK1 localizes to the autophagic isolation membrane and its kinase activity is important for autophagy induction. Furthermore, we identified a focal adhesion kinase (FAK) family interacting protein of 200 kD (FIP200) as a ULK-interacting protein. FIP200 also localizes to the isolation membrane together with ULK. Using FIP200-deficient cells, we found that FIP200 is essential for autophagosome formation and the proper function of ULK. Here, we discuss the role of the ULK-FIP200 complex in autophagy and the possibility that FIP200 functions as a mammalian counterpart of Atg17.  相似文献   

11.
12.
ULK1 (unc-51 like autophagy activating kinase 1), the key mediator of MTORC1 signaling to autophagy, regulates early stages of autophagosome formation in response to starvation or MTORC1 inhibition. How ULK1 regulates the autophagy induction process remains elusive. Here, we identify that ATG13, a binding partner of ULK1, mediates interaction of ULK1 with the ATG14-containing PIK3C3/VPS34 complex, the key machinery for initiation of autophagosome formation. The interaction enables ULK1 to phosphorylate ATG14 in a manner dependent upon autophagy inducing conditions, such as nutrient starvation or MTORC1 inhibition. The ATG14 phosphorylation mimics nutrient deprivation through stimulating the kinase activity of the class III phosphatidylinositol 3-kinase (PtdIns3K) complex and facilitates phagophore and autophagosome formation. By monitoring the ATG14 phosphorylation, we determined that the ULK1 activity requires BECN1/Beclin 1 but not the phosphatidylethanolamine (PE)-conjugation machinery and the PIK3C3 kinase activity. Monitoring the phosphorylation also allowed us to identify that ATG9A is required to suppress the ULK1 activity under nutrient-enriched conditions. Furthermore, we determined that ATG14 phosphorylation depends on ULK1 and dietary conditions in vivo. These results define a key molecular event for the starvation-induced activation of the ATG14-containing PtdIns3K complex by ULK1, and demonstrate hierarchical relations between the ULK1 activation and other autophagy proteins involved in phagophore formation.  相似文献   

13.
Autophagy is an intracellular trafficking pathway sequestering cytoplasm and delivering excess and damaged cargo to the vacuole for degradation. The Atg1/ULK1 kinase is an essential component of the core autophagy machinery possibly activated by binding to Atg13 upon starvation. Indeed, we found that Atg13 directly binds Atg1, and specific Atg13 mutations abolishing this interaction interfere with Atg1 function in vivo. Surprisingly, Atg13 binding to Atg1 is constitutive and not altered by nutrient conditions or treatment with the Target of rapamycin complex 1 (TORC1)-inhibitor rapamycin. We identify Atg8 as a novel regulator of Atg1/ULK1, which directly binds Atg1/ULK1 in a LC3-interaction region (LIR)-dependent manner. Molecular analysis revealed that Atg13 and Atg8 cooperate at different steps to regulate Atg1 function. Atg8 targets Atg1/ULK1 to autophagosomes, where it may promote autophagosome maturation and/or fusion with vacuoles/lysosomes. Moreover, Atg8 binding triggers vacuolar degradation of the Atg1-Atg13 complex in yeast, thereby coupling Atg1 activity to autophagic flux. Together, these findings define a conserved step in autophagy regulation in yeast and mammals and expand the known functions of LIR-dependent Atg8 targets to include spatial regulation of the Atg1/ULK1 kinase.  相似文献   

14.
15.
16.
Hara T  Mizushima N 《Autophagy》2009,5(1):85-87
The yeast serine threonine kinase Atg1 appears to be a key regulator of autophagy and its kinase activity is crucial for autophagy induction. Recent reports have indicated that a mammalian Atg1 homolog, UNC-51-like kinase (ULK) 1, is required for autophagy. We found that ULK1 localizes to the autophagic isolation membrane and its kinase activity is important for autophagy induction. Furthermore, we identified a focal adhesion kinase (FAK) family interacting protein of 200 kD (FIP200) as a ULK-interacting protein. FIP200 also localizes to the isolation membrane together with ULK. Using FIP200-deficient cells, we found that FIP200 is essential for autophagosome formation and the proper function of ULK. Here, we discuss the role of the ULK-FIP200 complex in autophagy and the possibility that FIP200 functions as a mammalian counterpart of Atg17.  相似文献   

17.
Autophagy is an evolutionary conserved catabolic process involved in several physiological and pathological processes such as cancer and neurodegeneration. Autophagy initiation signaling requires both the ULK1 kinase and the BECLIN 1-VPS34 core complex to generate autophagosomes, double-membraned vesicles that transfer cellular contents to lysosomes. In this study, we show that the BECLIN 1-VPS34 complex is tethered to the cytoskeleton through an interaction between the BECLIN 1-interacting protein AMBRA1 and dynein light chains 1/2. When autophagy is induced, ULK1 phosphorylates AMBRA1, releasing the autophagy core complex from dynein. Its subsequent relocalization to the endoplasmic reticulum enables autophagosome nucleation. Therefore, AMBRA1 constitutes a direct regulatory link between ULK1 and BECLIN 1-VPS34, which is required for core complex positioning and activity within the cell. Moreover, our results demonstrate that in addition to a function for microtubules in mediating autophagosome transport, there is a strict and regulatory relationship between cytoskeleton dynamics and autophagosome formation.  相似文献   

18.
Autophagy is a catabolic process in which cell components are degraded to maintain cellular homeostasis by nutrient limitations. Defects of autophagy are involved in numerous diseases, including cancer. Here, we demonstrate a new role of phospholipase D (PLD) as a regulator of autophagy. PLD inhibition enhances autophagic flux via ATG1 (ULK1), ATG5 and ATG7, which are essential autophagy gene products critical for autophagosome formation. Moreover, PLD suppresses autophagy by differentially modulating phosphorylation of ULK1 mediated by mTOR and adenosine monophosphate-activated protein kinase (AMPK), and by suppressing the interaction of Beclin 1 with vacuolar-sorting protein 34 (Vps34), indicating that PLD coordinates major players of the autophagic pathway, AMPK-mTOR-ULK1 and Vps34/Beclin 1. Ultimately, PLD inhibition significantly sensitized in vitro and in vivo cancer regression via genetic and pharmacological inhibition of autophagy, providing rationale for a new therapeutic approach to enhancing the anticancer efficacy of PLD inhibition. Collectively, we show a novel role for PLD in the molecular machinery regulating autophagy.  相似文献   

19.
Autophagy, the starvation-induced degradation of bulky cytosolic components, is up-regulated in mammalian cells when nutrient supplies are limited. Although mammalian target of rapamycin (mTOR) is known as the key regulator of autophagy induction, the mechanism by which mTOR regulates autophagy has remained elusive. Here, we identify that mTOR phosphorylates a mammalian homologue of Atg13 and the mammalian Atg1 homologues ULK1 and ULK2. The mammalian Atg13 binds both ULK1 and ULK2 and mediates the interaction of the ULK proteins with FIP200. The binding of Atg13 stabilizes and activates ULK and facilitates the phosphorylation of FIP200 by ULK, whereas knockdown of Atg13 inhibits autophagosome formation. Inhibition of mTOR by rapamycin or leucine deprivation, the conditions that induce autophagy, leads to dephosphorylation of ULK1, ULK2, and Atg13 and activates ULK to phosphorylate FIP200. These findings demonstrate that the ULK-Atg13-FIP200 complexes are direct targets of mTOR and important regulators of autophagy in response to mTOR signaling.  相似文献   

20.
Oculopharyngeal muscular dystrophy (OPMD) is a late-onset, autosomal dominant disease caused by the abnormal expansion of a polyalanine tract within the coding region of poly(A) binding protein nuclear 1 (PABPN1). The resultant mutant PABPN1 forms aggregates within the nuclei of skeletal muscle fibres. The mechanism by which the polyalanine expansion mutation in PABN1 causes disease is unclear. However, the mutation is thought to confer a toxic gain-of-function on the protein. Despite controversy over the role of aggregates, it has been consistently shown that agents that reduce aggregate load in cell models of OPMD also reduce levels of cell death. Recently generated animal models of OPMD will help elucidate the mechanism of disease and allow the trial of potential therapeutics. Indeed, administration of known anti-aggregation drugs attenuated muscle weakness in an OPMD mouse model. This suggests that anti-aggregation therapies may be beneficial in OPMD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号