首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To better understand the biology of leptin during prenatal life, the developmental and spatial regulation of leptin was studied in ovine fetuses. Fetal plasma leptin increased steadily between days 40 and 143 postcoitus (PC), but it was unrelated to fetal weight or placental weight at day 135 PC. Leptin gene expression was detected in fetal brain and liver during most of gestation and in fetal adipose tissue after day 100 PC. At day 130 PC, expression in fetal perirenal adipose tissue was approximately 10% of maternal expression. In contrast, leptin gene expression was never detected in the placenta and other uteroplacental tissues. When ewes were fed 55% of requirements between days 122 and 135 PC, fetal plasma leptin remained constant despite acute reduction in maternal concentration. We conclude that fetal plasma leptin originates mostly from nonadipose tissue in early pregnancy and, in addition, from fetal adipose tissue near term. The role of fetal plasma leptin remains uncertain given the lack of nutritional regulation and association with fetal growth.  相似文献   

2.
We have investigated the effects of maternal undernutrition during late gestation on maternal and fetal plasma concentrations of leptin and on leptin gene expression in fetal perirenal adipose tissue. Pregnant ewes were randomly assigned at 115 days of gestation (term = 147 +/- 3 days [mean +/- SEM]) to either a control group (n = 13) or an undernourished group (n = 16) that received approximately 50% of the control diet until 144-147 days of gestation. Maternal plasma glucose, but not leptin, concentrations were lower in the undernourished ewes. A significant correlation was found, however, between mean maternal plasma leptin (y) and glucose (x) concentrations (y = 2.9x - 2.4; r = 0.51, P < 0.02) when the control and undernourished groups were combined. Fetal plasma glucose and insulin, but not fetal leptin, concentrations were lower in the undernourished ewes, and no correlation was found between mean fetal leptin concentrations and either mean fetal glucose or insulin concentrations. A positive relationship, however, was found between mean fetal (y) and maternal (x) plasma leptin concentrations (y = 0.18x + 0.45; r = 0.66, P < 0.003). No significant difference was found in the relative abundance of leptin mRNA in fetal perirenal fat between the undernourished (0.60 +/- 0.09, n = 10) and control (0.70 +/- 0.08, n = 10) groups. Fetal plasma concentrations of leptin (y) and leptin mRNA levels (x) in perirenal adipose tissue were significantly correlated (y = 1.5x +/- 0.3; r = 0.69, P < 0.05). In summary, the capacity of leptin to act as a signal of moderate maternal undernutrition may be limited before birth in the sheep.  相似文献   

3.
Placental restriction (PR) of fetal growth results in a low birth weight and an increased visceral fat mass in postnatal life. We investigated whether PR alters expression of genes that regulate adipogenesis [IGF1, IGF1 receptor (IGF1R), IGF2, IGF2R, proliferator-activated receptor-gamma, retinoid-X-receptor-alpha], adipocyte metabolism (lipoprotein lipase, G3PDH, GAPDH) and adipokine signaling (leptin, adiponectin) in visceral adipose tissue before birth. PR was induced by removal of the majority of endometrial caruncles in nonpregnant ewes before mating. Fetal blood samples were collected from 116 days gestation, and perirenal visceral adipose tissue (PAT) was collected from PR and control fetuses at 145 days. PAT gene expression was measured by quantitative RT-PCR. PR fetuses had a lower weight (PR 2.90 +/- 0.32 kg; control, 5.12 +/- 0.24 kg; P < 0.0001), mean gestational arterial Po(2) (P < 0.0001), plasma glucose (P < 0.01), and insulin concentrations (P < 0.02), than controls. The expression of IGF1 mRNA in PAT was lower in the PR fetuses (PR, 0.332 +/- 0.063; control, 0.741 +/- 0.083; P < 0.01). Leptin mRNA expression in PAT was also lower in PR fetuses (PR, 0.077 +/- 0.009; control, 0.115 +/- 0.013; P < 0.05), although there was no difference in the expression of other adipokine or adipogenic genes in PAT between PR and control fetuses. Thus, restriction of placental and hence, fetal substrate supply results in decreased IGF1 and leptin expression in fetal visceral adipose tissue, which may alter the functional development of the perirenal fat depot and contribute to altered leptin signaling in the growth-restricted newborn and the subsequent emergence of an increased visceral adiposity.  相似文献   

4.
目的:研究皖南花猪不同发育阶段不同部位脂肪组织中脂联素(Adp)及其受体(AdpR1、AdpR2)和瘦素(leptin)mRNA的变化及性别差异。方法:选择出生、30、45、90、180日龄的皖南花猪雌、雄各5头,以β-actin为内标,采用△△Ct相对定量实时荧光PCR方法对皮下脂肪和肾周脂肪中Adp、AdpR1、AdpR2和leptin mRNA进行定量分析。结果:不同发育阶段皮下脂肪和肾周脂肪Adp、AdpR1、AdpR2、leptin mRNA的表达都有极显著差异(P<0.01)。总体上Adp mRNA在肾周脂肪显著高于皮下脂肪(P<0.05);AdpR1、AdpR2和leptin mRNA在皮下脂肪显著或极显著高于肾周脂肪(P<0.05或P<0.01)。除个别基因和个别日龄外,总体上各基因mRNA表达的性别差异不明显。无论在皮下脂肪还是肾周脂肪,Adp mRNA的表达与AdpR1、AdpR2呈显著或极显著正相关(P<0.05或P<0.01),与leptin显著负相关(P<0.05)。结论:皖南花猪不同发育阶段脂肪组织中Adp、AdpR1、AdpR2、leptin的基因表达有差异,且有组织特异性;Adp与其受体mRNA表达有相关性。  相似文献   

5.
Objective: Adiponectin is the only adipose‐specific hormone that, despite its exclusive production by adipose tissue, is reduced in obesity and is inversely correlated with leptin levels in adults. The aim of this study was to evaluate the adiponectin concentration in umbilical cord blood at different gestational ages and to investigate its possible associations with leptin levels and birth weight. Research Methods and Procedures: Umbilical cord blood was obtained from 132 newborns (male = 65, female = 67, gestational age: 35 to 42 weeks). The anthropometric variables of the newborns studied were birth weight, birth length, body weight/body length, and ponderal index. Adiponectin, insulin, and leptin levels were measured by radioimmunoassay methods. Results: Adiponectin levels in males were not different from those in females (24.10 ± 0.81 vs. 25.62 ± 0.84 μg/mL, p = 0.280). Adiponectin concentrations were positively correlated with birth weight (p < 0.05), birth length (p < 0.05), body weight/body length (p < 0.05), gestational age (p < 0.01), and leptin levels (p < 0.01). Discussion: These findings indicate that adiponectin is present in umbilical cord blood after 35 to 42 weeks of gestation, with higher levels than those usually found in adults, no gender differences, and a positive correlation with birth weight and leptin. These results suggest that not only could neonatal hyperadiponectinemia be associated with the increase of adiponectin production by fetal adipose tissue but also with a possible reduction in an unknown mechanism related to the suppression of adiponectin observed in adults.  相似文献   

6.

Objective:

It remains uncertain whether leptin and adiponectin levels are correlated in maternal vs. fetal circulations. Little is known about whether leptin and adiponectin affect insulin sensitivity during fetal life.

Design and Methods:

In a prospective singleton pregnancy cohort (n = 248), we investigated leptin and adiponectin concentrations in maternal (at 24‐28 and 32‐35 weeks of gestation) and fetal circulations, and their associations with fetal insulin sensitivity (glucose/insulin ratio, proinsulin level).

Results:

Comparing concentrations in cord vs. maternal blood, leptin levels were 50% lower, but adiponectin levels more than doubled. Adjusting for gestational age at blood sampling, consistent and similar positive correlations (correlation coefficients: 0.31‐0.34, all P < 0.0001) were observed in leptin or adiponectin levels in maternal (at 24‐28 or 32‐25 weeks of gestation) vs. fetal circulations. For each SD increase in maternal plasma concentration at 24‐28 weeks, cord plasma concentration increased by 12.7 (95% confidence interval 6.8‐18.5) ng/ml for leptin, and 2.9 (1.8‐4.0) µg/ml for adiponectin, respectively (adjusted P < 0.0001). Fetal insulin sensitivity was negatively associated with cord blood leptin (each SD increase was associated with a 5.4 (2.1‐8.7) mg/dl/µU/ml reduction in cord plasma glucose/insulin ratio, and a 5.6 (3.9, 7.4) pmol/l increase in proinsulin level, all adjusted P < 0.01) but not adiponectin (P > 0.4) levels). Similar associations were observed in nondiabetic full‐term pregnancies (n = 211).

Conclusions:

The results consistently suggest a maternal impact on fetal leptin and adiponectin levels, which may be an early life pathway in maternal‐fetal transmission of the propensity to obesity and insulin resistance.  相似文献   

7.
AimsOur aim was to evaluate the effect of exercise training (TR) on adipocyte-size-dependent expression of leptin and adiponectin.Main methodsMale Wistar rats were divided into 2 groups, sedentary control (CR) and TR group, and both monitored for 9 weeks. Adipocytes isolated from epididymal, retroperitoneal, and inguinal fat depots were independently separated into 3 fractions of different cell size, and the relationships between adipocyte size and either leptin or adiponectin mRNA were determined by real-time RT-PCR analysis.Key findingsIn epididymal and inguinal adipose tissue, positive relationships between adipocyte size and both leptin and adiponectin mRNA expression were found. Comparison of TR and CR rats showed no significant effect of TR on the slopes of the linear regression lines of correlation between leptin mRNA and adipocyte size in either adipose tissue, whereas the slopes of the regression line of correlation between adipocyte size and adiponectin mRNA were greater in TR group. Leptin levels per milliliter of plasma were significantly lower in TR than CR rats, whereas leptin levels adjusted to the 3 fat depots did not differ. TR did not affect adiponectin levels in plasma, whereas adiponectin levels adjusted to the 3 fat depots were significantly greater in TR than CR group.SignificanceTR-induced reduction in leptin mRNA expression was closely associated with smaller adipocyte size. However, TR amplified the adipocyte-size-dependent expression of adiponectin mRNA, suggesting that TR-induced alterations in adiponectin mRNA may also be mediated by factor(s) other than adipocyte size.  相似文献   

8.
《Biomarkers》2013,18(1):44-50
Objective: The role of adipokines in the development of cardiac syndrome X (CSX) remains unknown.

Methods: Fifty-nine CSX subjects were retrospectively enrolled from our catheterization databank. Another 54 subjects with valvular heart disease or arrhythmia served as controls. Adipokines were measured by ELISA tests.

Results: The CSX had lower circulating adiponectin but higher leptin and higher leptin/adiponectin ratio (×1000) (3.78?±?4.96 vs. 2.14?±?5.67, p < 0.001) than those of the controls. In a multivariate analysis, a higher leptin/adiponectin ratio was a predictor of CSX, while insulin-resistance index was not.

Conclusions: Adipokines may be implicated in the pathogenesis of CSX.  相似文献   

9.
Foetal life malnutrition has been studied intensively in a number of animal models. Results show that especially foetal life protein malnutrition can lead to metabolic changes later in life. This might be of particular importance for strict carnivores, for example, cat and mink (Neovison vison) because of their higher protein requirement than in other domestic mammals. This study aimed to investigate the effects of low protein provision during foetal life to male mink kits on their protein metabolism during the early post-weaning period of rapid growth and to investigate whether foetal life protein deficiency affects the response to adequate or deficient protein provision post weaning. Further, we intended to study whether the changes in the gene expression of key enzymes in foetal hepatic tissue caused by maternal protein deficiency were manifested post-weaning. A total of 32 male mink kits born to mothers fed either a low-protein diet (LP), that is, 14% of metabolizable energy (ME) from protein (foetal low - FL), n = 16, or an adequate-protein (AP) diet, that is, 29% of ME from protein (foetal adequate - FA), n = 16) in the last 16.3 ± 1.8 days of pregnancy were used. The FL offspring had lower birth weight and lower relative abundance of fructose-1,6-bisphosphatase (Fru-1,6-P2ase) and pyruvate kinase mRNA in foetal hepatic tissue than FA kits. The mothers were fed a diet containing adequate protein until weaning. At weaning (7 weeks of age), half of the kits from each foetal treatment group were fed an AP diet (32% of ME from protein; n = 8 FA and 8 FL) and the other half were fed a LP diet (18% of ME from protein; n = 8 FA and 8 FL) until 9.5 weeks of age, yielding four treatment groups (i.e. FA-AP, FA-LP, FL-AP and FL-LP). Low protein provision in foetal life lowered the protein oxidation post-weaning compared with the controls (P = 0.006), indicating metabolic flexibility and a better ability to conserve protein. This could not, however, be supported by changes in liver mass because of foetal life experience. A lower relative abundance of Fru-1,6-P2ase mRNA was observed (P < 0.05), being lower in 9.5-week-old FL than in FA kits. It can be concluded that foetal life protein restriction leads to changes in post-weaning protein metabolism through lower protein oxidation of male mink kits.  相似文献   

10.
The primary objective of the current study was to assess the influence of early high-fat feeding on tissue trace element content in young male Wistar rats. Twenty weanling male Wistar rats were divided into two groups fed standard (STD) or high-fat diet (HFD) containing 10 and 31.6 % of total calories from fat, respectively, for 1 month. Serum lipid spectrum, apolipoproteins, glucose, insulin, adiponectin, and leptin levels were assessed. The level of trace elements was estimated using inductively coupled plasma mass spectrometry. High-fat feeding significantly increased epidydimal (EDAT) and retroperitoneal adipose tissue (RPAT), as well as total adipose tissue mass by 34, 103, and 59 %, respectively. Serum leptin levels in HFD animals were twofold higher than those in the control rats. No significant difference in serum lipid spectrum, apolipoproteins, glucose, adiponectin, and insulin was detected between the groups. HFD significantly altered tissue trace element content. In particular, HFD-fed animals were characterized by significantly lower levels of Cu, I, Mn, Se, and Zn in the liver; Cr, V, Co, Cu, Fe, and I content of EDAT; Co, Cu, I, Cr, V, Fe, and Zn concentration in RPAT samples. At the same time, only serum Cu was significantly depressed in HFD-fed animals as compared to the control ones. Hair Co, Mn, Si, and V levels were significantly increased in comparison to the control values, whereas Se and I content was decreased. HFD feeding induced excessive adiposity and altered tissue trace element content in rats without insulin resistance, adiponectin deficiency, and proatherogenic state. Hypothetically, trace element disbalance may precede obesity-associated metabolic disturbances.  相似文献   

11.
Objective: To examine gender differences and hormonal regulation of resistin, adiponectin, and leptin. Research Methods and Procedures: Plasma levels were measured, and mRNA expression in perigonadal fat was quantified by RNase protection assays. Results: Plasma resistin declined with age despite an increase in adiposity in both genders. In male mice, plasma leptin increased, whereas adiponectin levels were constant. In females, both adiponectin and leptin levels increased with age. Resistin mRNA levels were significantly higher in female than male mice at all ages, whereas leptin and adiponectin mRNA levels were similar in fat from 6‐week‐old male and female mice, and sexual dimorphism was apparent only in the older mice, with higher levels apparent in females. Castration did not abolish gender differences in plasma levels or resistin, adiponectin, or leptin mRNAs. Castration of male mice did not significantly change adipokine mRNA levels or plasma levels of resistin or leptin; however, adiponectin was significantly increased. Dihydrotestosterone treatment had no effect on adipokine mRNA expression or resistin and adiponectin levels but increased leptin levels. In contrast, ovariectomy significantly increased resistin mRNA abundance and decreased leptin and adiponectin mRNAs. Plasma leptin levels were also increased by ovariectomy, whereas resistin and adiponectin levels were unchanged. Estrogen replacement significantly reduced resistin mRNA and increased leptin and adiponectin mRNA levels but had no effect on plasma adipokine levels. Discussion: The gender differences in adipokine mRNA expression and plasma levels were not ablated by castration and seem to be dependent on other factors in addition to gonadal steroids.  相似文献   

12.
IntroductionDopamine (DA) binds to five receptors (DAR), classified by their ability to increase (D1R-like) or decrease (D2R-like) cAMP. In humans, most DA circulates as dopamine sulfate (DA-S), which can be de-conjugated to bioactive DA by arylsulfatase A (ARSA). The objective was to examine expression of DAR and ARSA in human adipose tissue and determine whether DA regulates prolactin (PRL) and adipokine expression and release.MethodsDAR were analyzed by RT-PCR and Western blotting in explants, primary adipocytes and two human adipocyte cell lines, LS14 and SW872. ARSA expression and activity were determined by qPCR and enzymatic assay. PRL expression and release were determined by luciferase reporter and Nb2 bioassay. Analysis of cAMP, cGMP, leptin, adiponectin and interleukin 6 (IL-6) was done by ELISA. Activation of MAPK and PI3 kinase/Akt was determined by Western blotting.ResultsDAR are variably expressed at the mRNA and protein levels in adipose tissue and adipocytes during adipogenesis. ARSA activity in adipocyte increases after differentiation. DA at nM concentrations suppresses cAMP, stimulates cGMP, and activates MAPK in adipocytes. Acting via D2R-like receptors, DA and DA-S inhibit PRL gene expression and release. Acting via D1R/D5R receptors, DA suppresses leptin and stimulates adiponectin and IL-6 release.ConclusionsThis is the first report that human adipocytes express functional DAR and ARSA, suggesting a regulatory role for peripheral DA in adipose functions. We speculate that the propensity of some DAR-activating antipsychotics to increase weight and alter metabolic homeostasis is due, in part, to their direct action on adipose tissue.  相似文献   

13.
We compared the therapeutic effects of autologous and nonautologous adipose-derived mesenchymal stem cell (ADMSC), in ameliorating the renal function in a rabbit model of acute pyelonephritis. The difference of perirenal and neck subcutaneous ADMSCs were also evaluated. Twenty female rabbits were apportioned to 5 groups. In group I (n = 4), the rabbits were injected direct inoculation of Escherichia coli (E. coli) into the right kidney. In group II (n = 4), autologous ADMSCs obtained from nape adipose tissue were injected into the subcapsular space 1 week after E. coli injection, while nonautologous ADMSCs of the same origin (from male rabbits) were applied in group III (n = 4). In group IV (n = 4), autologous perirenal ADMSCs were applied with the same method, while perirenal nonautologous ADMSCs from male rabbits were used in group V (n = 4). Technetium-99m-DMSA renal scan was performed 1, 2 and 4 months post-injection in all groups. Kidneys were excised for the evaluation of histopathological changes in the same time points. PCR examination for detection of Y-chromosome (in group III and V) and fluorescent evaluation (in group II and IV) were also performed to determine the fate of injected cells. Injection of autologous ADMSCs resulted in more satisfactory outcomes in reduction of interstitial fibrosis, tubular, and glomerular atrophy as compared to nonautologous groups. However, histopathological ameliorations were significantly better in group IV in which autologous perirenal ADMSC was applied. Remarkably, two months after the injection, Technetium-99m-DMSA renal scan showed that right kidney reached to near normal cortical function (48 and 45%) in group IV and V, respectively as compared to groups II (41%) and III (37%). Autologous ADMSCs may have better results in cell therapy as compared to nonautologous cells. However, more satisfactory outcomes may be obtained when the cell source is selected from the surrounding adipose tissue.  相似文献   

14.
Takemori K  Kimura T  Shirasaka N  Inoue T  Masuno K  Ito H 《Life sciences》2011,88(25-26):1088-1094
AimsTo determine the effects of food restriction (FR) on the expression of Sirt1 and its down-stream factors related to lipid and glucose metabolism in obese and hypertensive rats (SHRSP/IDmcr-fa), as a model of human metabolic syndrome.Main methodsMale, 10-week-old SHRSP/IDmcr-fa rats were treated with 85% FR for 2 weeks. Metabolic parameters, serum adipocytokines and distribution of serum adiponectin multimers were investigated. Sirt1 expression was determined in epididymal adipose tissue, liver and skeletal muscle. We also determined the expression of PPARα, γ and other adipocyte-related genes in epididymal adipose tissue, and glucose transporters (GLUT2 and GLUT4) in the liver and skeletal muscle.Key findingsFR improved the general conditions as well as blood chemistry of SHRSP/IDmcr-fa rats. In the epididymal adipose tissue of the FR rats, Sirt1 expression was enhanced, as was adiponectin, whereas leptin was downregulation, findings that were paralleled by the serum protein levels. Furthermore, the serum ratio of high to total adiponectin was increased in the FR group. The mRNA expression of Sirt1 was upregulated in the adipose tissue in the FR group. Sirt1 mRNA expression was downregulated, while PPARα and GLUT2 expression was enhanced in the liver. No differences were found in terms of Sirt1, PPAR or GLUT4 expression in skeletal muscle.SignificanceThese results indicate that FR corrects adipokine dysfunction by activating PPARγ via Sirt1 in adipose tissue. Furthermore, glucose and lipid metabolism are activated by upregulation of GLUT2 via the activation of PPARα in the liver.  相似文献   

15.
《Endocrine practice》2012,18(6):887-893
ObjectiveTo investigate short-term effects of thyroidectomy-induced hypothyroidism on leptin, adiponectin, and resistin concentrations in association with anthropometric data.MethodsThirty premenopausal women with euthyroid nodulargoiter-mean age, 44.0 ± 11.6 years; mean body mass index (BMI), 28.6 ± 5.9 kg/m2; 13 obese, 7 overweight, and 10 normal weight subjects—scheduled for total thyroidectomy were included in the study. Serum leptin, adiponectin, resistin, free triiodothyronine, free thyroxine, thyroid-stimulating hormone, glucose, insulin, and C-reactive protein concentrations, lipid profile, and anthropometric variables were determined in the euthyroid state (preoperatively) and the hypothyroid state (postoper atively, with a thyroid-stimulating hormone concentration > 30 mIU/L).ResultsBody weight, BMI, waist and hip circumferences, body fat mass, and serum lipid concentrations increased significantly after thyroidectomy. No significant difference was found between preoperative and postoperative serum leptin, adiponectin, and resistincon centrations. Fat tissue mass-corrected leptin, adiponectin, and resistin concentrations did not differ significantly between euthyroid and hypothyroid periods. Thyroid hor mone concentrations showed no significant correlations with adipokine levels.ConclusionSerum adipokine concentrations seem not to change significantly during short-term thyroidec tomy-induced hypothyroidism despite significant increases in body weight, BMI, fat mass, and lipid concentrations.(Endocr Pract. 2012;18:887-893)  相似文献   

16.
Abstract

The sequence of the pig ob cDNA, which codes for the protein leptin, has been determined by screening a pig adipose cDNA library with an RT‐PCR amplified cDNA fragment of this gene. The 501 bp ob cDNA has 89% identity to the human ob cDNA, 92% identity to the bovine ob cDNA, 84% identity to the mouse ob cDNA and 84% identity to the rat ob cDNA. At the amino acid level, pig leptin which codes for a protein with a predicted molecular weight of 18,661‐dalton, has 86% identity to human leptin, 93% identity to bovine leptin, 84% identity to rat leptin and 84% identity to mouse leptin. RT‐PCR screening of RNA isolated from pig adipose, skeletal muscle, cardiac muscle, pancreas, stomach, kidney, spleen and jejunum detected ob mRNA only in adipose tissue; Northern blots with an ob cDNA probe identified a 4.0 kb species in adipose tissue. The conservation of sequence and expression pattern of leptin in the pig reported here indicates that as in other species, this protein likely plays an important role in controlling food intake and fat deposition in the pig.  相似文献   

17.
Intrauterine growth restriction is a significant problem worldwide, resulting in increased rates of neonatal morbidity and mortality, as well as increased risks for metabolic and cardiovascular disease. The present study investigated the role of maternal undernutrition and l-arginine administration on fetal growth and development. Embryo transfer was utilized to generate genetically similar singleton pregnancies. On Day 35 of gestation, ewes were assigned to receive either 50 or 100% of their nutritional requirements. Ewes received i.v. injections of either saline or l-arginine three times daily from Day 100 to Day 125. Fetal growth was assessed at necropsy on Day 125. Maternal dietary manipulation altered circulating concentrations of leptin, progesterone, and amino acids in maternal plasma. Fetal weight was reduced in nutrient-restricted ewes on Day 125 compared with 100% fed ewes. Compared with saline-treated underfed ewes, maternal l-arginine administration did not affect fetal weight but increased weight of the fetal pancreas by 32% and fetal peri-renal brown adipose tissue mass by 48%. These results indicate that l-arginine administration enhanced fetal pancreatic and brown adipose tissue development. The postnatal effects of increased pancreatic and brown adipose tissue growth warrant further study.  相似文献   

18.
Long-term fructose consumption has been shown to evoke leptin resistance, to elevate triglyceride levels and to induce insulin resistance and hepatic steatosis. Autophagy has been suggested to function in processes such as lipid storage in adipose tissue and inflammation in liver. Autophagy and the leptin system have also been suggested to regulate each other. This study aimed to identify the changes caused by fetal undernourishment and postnatal fructose diet in the gene expression of leptin, its receptors (LEPR-a, LEPR-b, LEPR-c, LEPR-e and LEPR-f) and autophagy genes in the white adipose tissue (WAT) and liver of adult male rats in order to clarify the mechanism behind the metabolic alterations. The data clearly revealed that the long-term postnatal fructose diet decreased leptin levels (p < 0.001), LEPR (p < 0.001), especially LEPR-b (p = 0.011) and LEPR-f (p = 0.005), as well as SOCS3 (p < 0.001), ACC (p = 0.006), ATG7 (p < 0.001), MAP1LC3β (p < 0.001) and LAMP2 (p = 0.004) mRNA expression in WAT. Furthermore, LEPR (p < 0.001), especially LEPR-b (p = 0.001) and LEPR-f (p < 0.001), ACC (p = 0.010), ATG7 (p = 0.024), MAP1LC3β (p = 0.003) and LAMP2 (p < 0.001) mRNA expression in the liver was increased in fructose-fed rats. In addition, the LEPR expression in liver and MAP1LC3β expression in WAT together explained 55.7 % of the variation in the plasma triglyceride levels of the rats (R adj. 2  = 0.557, p < 0.001). These results, together with increased p62 levels in WAT (p < 0.001), could indicate decreased adipose tissue lipid storing capacity as well as alterations in liver metabolism which may represent a plausible mechanism through which fructose consumption could disturb lipid metabolism and result in elevated triglyceride levels.  相似文献   

19.
This study reports the metabolic and morphological characteristics of bovine intermuscular adipose tissue (AT) throughout foetal growth. Our hypothesis was that the histological and molecular features of intermuscular AT would be different from those previously reported for foetal perirenal AT, based on its anatomical location near the muscle and the recent identification of two distinct adipocyte precursors in mouse AT depending on their locations. To address this question, intermuscular AT was sampled from Charolais and Blond d'Aquitaine foetuses at 180, 210 and 260 days post conception (dpc). The two bovine breeds were chosen because of the higher adiposity of Charolais than Blond d'Aquitaine cattle during the postnatal life. Regardless of the breed, adipocyte volume increased slightly (+38%, P < 0.01) with increasing foetal age. This was concomitant with a decrease (P < 0.05) in the activity of enzymes involved in de novo fatty acid (FA) synthesis (FA synthase and glucose-6-phosphate dehydrogenase) and FA esterification (glycerol-3-phosphate dehydrogenase) when expressed per million adipocytes, and with an increase (P ⩽ 0.01) in mRNA abundances for uncoupling protein 1, adiponectin and leptin (LEP) between 180 and 260 dpc. No difference was observed in the adipocyte volume between breeds, which was consistent with the lack of major between-breed differences in mRNA abundances or activities of enzymes involved in lipid metabolism. The mRNA abundance of lipoprotein lipase was maintained across ages, suggesting a storage of circulating FA rather than of FA synthesized de novo. Plasma LEP increased with foetal age, but only in the Charolais breed (+71%, P ⩽ 0.01), and was two- to threefold higher in Charolais than Blond d'Aquitaine foetuses. Regardless of the breed, bovine intermuscular AT contained predominantly unilocular adipocytes believed to be white adipocytes that were larger at 260 dpc than at 180 dpc. These data thus challenge current concepts of the largely brown nature of bovine foetal AT (based on histological and metabolic features of perirenal AT as previously reported a few days before or after birth).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号