首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundMitochondria is a key organelle for energy production and cellular adaptive response to intracellular and extracellular stresses. Mitochondrial stress can be evoked by various stimuli such as metabolic stressors or pathogen infection, which may lead to expression of ‘mitokines’ such as growth differentiation factor 15 (GDF15).Scope of reviewThis review summarizes the mechanism of GDF15 expression in response to organelle stress such as mitochondrial stress, and covers pathophysiological conditions or diseases that are associated with elevated GDF15 level. This review also illustrates the in vivo role of GDF15 expression in those stress conditions or diseases, and a potential of GDF15 as a therapeutic agent against metabolic disorders such as NASH.Major conclusionsMitochondrial unfolded protein response (UPRmt) is a critical process to recover from mitochondrial stress. UPRmt can induce expression of secretory proteins that can exert systemic effects (mitokines) as well as mitochondrial chaperons. GDF15 can have either protective or detrimental systemic effects in response to mitochondrial stresses, suggesting its role as a mitokine. Mounting evidence shows that GDF15 is also induced by stresses of organelles other than mitochondria such as endoplasmic reticulum (ER). GDF15 level is increased in serum or tissue of mice and human subjects with metabolic diseases such as obesity or NASH. GDF15 can modulate metabolic features of those diseases.General significanceGDF15 play a role as an integrated stress response (ISR) beyond mitochondrial stress response. GDF15 is involved in the pathogenesis of metabolic diseases such as NASH, and also could be a candidate for therapeutic agent against those diseases.  相似文献   

2.
Mitochondrial dysfunction has been implicated as a cause of age-related disorders, and the mitochondrial theory of aging links aging, exercise, and diet. Endothelial dysfunction is a key paradigm for vascular disease and aging, and there is considerable evidence that exercise and dietary restriction protect against cardiovascular disease. Recent studies demonstrate that estrogen receptors are present in mitochondria and that estrogen promotes mitochondrial efficiency and decreases oxidative stress in the cerebral vasculature. Chronic estrogen treatment increases mitochondrial capacity for oxidative phosphorylation while decreasing production of reactive oxygen species. The effectiveness of estrogen against age-related cardiovascular disorders, including stroke, may thus arise in part from hormonal effects on mitochondrial function. Estrogen-mediated mitochondrial efficiency may also be a contributing factor to the longer lifespan of women.  相似文献   

3.
Growth differentiation factor 15 (GDF15) is a stress-responsive cytokine also known as a mitokine; however, its role in mitochondrial homeostasis and cellular senescence remained elusive. We show here that knocking down GDF15 expression in human dermal fibroblasts induced mitochondrial dysfunction and premature senescence, associated with a distinct senescence-associated secretory phenotype. Fibroblast-specific loss of GDF15 expression in a model of 3D reconstructed human skin induced epidermal thinning, a hallmark of skin aging. Our results suggest GDF15 to play a so far undisclosed role in mitochondrial homeostasis to delay both the onset of cellular senescence and the appearance of age-related changes in a 3D human skin model.  相似文献   

4.
The aging stress response   总被引:1,自引:0,他引:1  
Aging is the outcome of a balance between damage and repair. The rate of aging and the appearance of age-related pathology are modulated by stress response and repair pathways that gradually decline, including the proteostasis and DNA damage repair networks and mitochondrial respiratory metabolism. Highly conserved insulin/IGF-1, TOR, and sirtuin signaling pathways in turn control these critical cellular responses. The coordinated action of these signaling pathways maintains cellular and organismal homeostasis in the face of external perturbations, such as changes in nutrient availability, temperature, and oxygen level, as well as internal perturbations, such as protein misfolding and DNA damage. Studies in model organisms suggest that changes in signaling can augment these critical stress response systems, increasing life span and reducing age-related pathology. The systems biology of stress response signaling thus provides a new approach to the understanding and potential treatment of age-related diseases.  相似文献   

5.
The targeted removal of damaged proteins by proteolysis is crucial for cell survival. We have shown previously that the Lon protease selectively degrades oxidized mitochondrial proteins, thus preventing their aggregation and cross-linking. We now show that the Lon protease is a stress-responsive protein that is induced by multiple stressors, including heat shock, serum starvation, and oxidative stress. Lon induction, by pretreatment with low-level stress, protects against oxidative protein damage, diminished mitochondrial function, and loss of cell proliferation induced by toxic levels of hydrogen peroxide. Blocking Lon induction with Lon siRNA also blocks this induced protection. We propose that Lon is a generalized stress-protective enzyme whose decline may contribute to the increased levels of protein damage and mitochondrial dysfunction observed in aging and age-related diseases.  相似文献   

6.
According to the free radical theory of aging, oxygen-derived free radicals causes the age-associated impairment at the cellular and tissue levels. The mitochondrial theory of aging points to mitochondria, and specially mitochondrial DNA, as the major targets of free radical attack upon aging. Thus, oxidative damage to mtDNA accumulate with age in human and rodent tissues and also is inversely related to maximum life span of mammals. Mitochondrial deficits, such as a decrease in mitochondrial membrane potential, occur upon aging due to oxidative damage. The age-related mitochondrial oxidative stress may be prevented by late onset administration of certain antioxidants, such as Ginkgo biloba extract EGb 761. These antioxidants may also delay the physiological impairment associated with aging.  相似文献   

7.
Oxidative stress has a central role in aging and in several age-linked diseases such as neurodegenerative diseases, diabetes and cancer. Mitochondria, as the main cellular source and target of reactive oxygen species (ROS) in aging, are recognized as very important players in the above reported diseases. Impaired mitochondrial oxidative phosphorylation has been reported in several aging tissues. Defective mitochondria are not only responsible of bioenergetically less efficient cells but also increase ROS production further contributing to tissues oxidative stress. Acetyl-L-carnitine (ALCAR) is a biomolecule able to limit age-linked mitochondrial decay in brain, liver, heart and skeletal muscles by increasing mitochondrial efficiency. Here the global changes induced by aging and by ALCAR supplementation to old rat on the mitochondrial proteome of rat liver has been analyzed by means of the two-dimensional polyacrylamide gel electrophoresis. Mass spectrometry has been used to identify the differentially expressed proteins. A significant age-related change occurred in 31 proteins involved in several metabolisms. ALCAR supplementation altered the levels of 26 proteins. In particular, ALCAR reversed the age-related alterations of 10 mitochondrial proteins relative to mitochondrial cristae morphology, to the oxidative phosphorylation and antioxidant systems, to urea cycle, to purine biosynthesis.  相似文献   

8.
Dysfunctions caused by genetic defects in the mitochondrial DNA (mtDNA) of humans are called mitochondrial diseases; however, mtDNA mutations are also associated with aging and age-related diseases. Here, we present an original cellular model that allows gathering information on molecules that might contrast or prevent mitochondrial dysfunctions and their related diseases. This model allowed us to show that resveratrol (RSV), a phytochemical present in food, exerts protective effects at low concentrations on resting human fibroblasts carrying dysfunctional respiratory chain Complex I. Cells were maintained both in resting condition, to mimic the high energy demanding post-mitotic tissues (serum absence and gramicidin presence), and under glucose deficiency to push the synthesis of ATP via oxidative phosphorylation. Pre-incubation with RSV prolonged the viability of the fibroblasts exposed to rotenone, a well-known specific inhibitor of the respiratory chain Complex I, and decreased mitochondrial fragmentation. It significantly prevented the oxidative phosphorylation impairment indirectly caused by the rotenone-mediated Complex I inhibition, allowing for an almost complete preservation of the cellular ATP level. Indeed, RSV limited the rotenone-induced reactive oxygen species increase, allowing for the maintenance of a functional mitochondrial membrane potential. These findings indicate the potential usage of resveratrol to prevent or possibly treat many disorders, in which the bioenergetic defects and oxidative stress are the primary (mitochondrial encephalomyopathy), or the secondary (age-related diseases) causes of the pathology; and to also assist cell senescence during aging.  相似文献   

9.
Aging is an agglomerate of biological long-lasting processes that result being inevitable. Main actors in this scenario are both long-term inflammation and oxidative stress. It has been proved that oxidative stress induce alteration in proteins and this fact itself is critically important in the pathophysiological mechanisms leading to diseases typical of aging. Among reactive species, chlorine ones such as hypochlorous acid (HOCl) are cytotoxic oxidants produced by activated neutrophils during chronic inflammation processes. HOCl can also cause damages by reacting with biological molecules. HOCl is generated by myeloperoxidase (MPO) and augmented serum levels of MPO have been described in acute and chronic inflammatory conditions in cardiovascular patients and has been implicated in many inflammatory diseases such as atherosclerosis, neurodegenerative conditions, and some cancers. Due to these data, we decided to conduct an up-to-date review evaluating chlorinative stress effects on every age-related disease linked; potential anti-oxidant countermeasures were also assessed. Results obtained associated HOCl generation to the aging processes and confirmed its connection with diseases like neurodegenerative and cardiovascular pathologies, atherosclerosis and cancer; chlorination was mainly linked to diseases where molecular (protein) alteration constitute the major suspected cause: i.e. inflammation, tissue lesions, DNA damages, apoptosis and oxidative stress itself. According data collected, a healthy lifestyle together with some dietary suggestion and/or the administration of nutracetical antioxidant integrators could balance the effects of chlorinative stress and, in some cases, slow down or prevent the onset of age-releated diseases.  相似文献   

10.
线粒体是细胞的代谢中心之一,不仅产生大量的ATP为细胞提供能量,还参与多种生物分子(例如核酸、氨基酸、胆固醇和脂肪酸)合成及代谢废物的处理。ATP是细胞重要的“能源货币”,是能量载体和信号分子,参与调节细胞的各种生命活动。动物与人在激烈运动时,ATP消耗速率增加数十倍,但细胞内的ATP仍维持在“设定点”水平,不出现降低。因此,传统生理学观点认为,动物细胞内ATP水平保持恒定。但新的研究结果表明,生物细胞内ATP水平存在波动。生理条件下,增加能量物资(糖、脂和氨基酸等)和氧供,促进线粒体ATP合成,可使细胞内ATP水平出现一过性升高。新的研究证明,在肥胖情况下,由于能量物质的过多供应,细胞内ATP水平出现持续性升高,构成代谢紊乱的源头信号。线粒体ATP合成受多种因素影响,如氧化应激、钙超载、缺氧、线粒体膜通透性增加和线粒体DNA突变等。这些因素与疾病条件下细胞内ATP水平持续降低相关,常见的疾病包括阿尔茨海默症、帕金森疾病、精神分裂症、肿瘤、心衰、全身炎症反应综合征等。本综述简要概述线粒体调节细胞内ATP水平的研究进展,重点讨论造成ATP波动的因素、机制及病理生理学意义。  相似文献   

11.
拥有健康的晚年是每一个人的祈盼,这也是目前应对即将到来的社会老龄化危机而需要解决的重要课题.实现健康衰老需要对人类衰老发生的机制有深入的了解,比如在此过程中扮演着重要角色的线粒体的研究.线粒体是细胞能量和自由基代谢中心,也是细胞凋亡调控中心,并在信号转导和基因表达调控中发挥重要作用.线粒体一旦受损,一方面能量代谢发生紊乱,另一方面产生大量自由基,影响细胞的正常生长,并导致细胞甚至机体的衰老.正常情况下,细胞通过自噬溶酶体机制选择性清除受损伤和不需要的线粒体,这是线粒体质量控制的重要机制.研究发现,线粒体质量控制异常可能在衰老发生过程中起关键作用.限食及增强运动能有效促进线粒体质量控制,改善线粒体功能并延缓衰老.  相似文献   

12.
Oxidative stress and aberrant signaling in aging and cognitive decline   总被引:7,自引:0,他引:7  
Dröge W  Schipper HM 《Aging cell》2007,6(3):361-370
Brain aging is associated with a progressive imbalance between antioxidant defenses and intracellular concentrations of reactive oxygen species (ROS) as exemplified by increases in products of lipid peroxidation, protein oxidation, and DNA oxidation. Oxidative conditions cause not only structural damage but also changes in the set points of redox-sensitive signaling processes including the insulin receptor signaling pathway. In the absence of insulin, the otherwise low insulin receptor signaling is strongly enhanced by oxidative conditions. Autophagic proteolysis and sirtuin activity, in turn, are downregulated by the insulin signaling pathway, and impaired autophagic activity has been associated with neurodegeneration. In genetic studies, impairment of insulin receptor signaling causes spectacular lifespan extension in nematodes, fruit flies, and mice. The predicted effects of age-related oxidative stress on sirtuins and autophagic activity and the corresponding effects of antioxidants remain to be tested experimentally. However, several correlates of aging have been shown to be ameliorated by antioxidants. Oxidative damage to mitochondrial DNA and the electron transport chain, perturbations in brain iron and calcium homeostasis, and changes in plasma cysteine homeostasis may altogether represent causes and consequences of increased oxidative stress. Aging and cognitive decline thus appear to involve changes at multiple nodes within a complex regulatory network.  相似文献   

13.
Reactive oxygen species (ROS) and telomere dysfunction are both associated with aging and the development of age-related diseases. Although there is evidence for a direct relationship between ROS and telomere dysfunction as well as an independent association of oxidative stress and telomere attrition with age-related disorders, there has not been sufficient exploration of how the interaction between oxidative stress and telomere function may contribute to the pathophysiology of cardiovascular diseases (CVD). To better understand the complex relationships between oxidative stress, telomerase biology and pathophysiology, we examined the telomere biology of aortic smooth muscle cells (ASMCs) isolated from mutant mouse models of oxidative stress. We discovered that telomere lengths were significantly shorter in ASMCs isolated from superoxide dismutase 2 heterozygous (Sod2+/?) mice, which exhibit increased arterial stiffness with aging, and the observed telomere attrition occurred over time. Furthermore, the telomere erosion occurred even though telomerase activity increased. In contrast, telomeres remained stable in wild-type and superoxide dismutase 1 heterozygous (Sod1+/?) mice, which do not exhibit CVD phenotypes. The data indicate that mitochondrial oxidative stress, in particular elevated superoxide levels and decreased hydrogen peroxide levels, induces telomere erosion in the ASMCs of the Sod2+/? mice. This reduction in telomere length occurs despite an increase in telomerase activity and correlates with the onset of disease phenotype. Our results suggest that the oxidative stress caused by imbalance in mitochondrial ROS, from deficient SOD2 activity as a model for mitochondrial dysfunction results in telomere dysfunction, which may contribute to pathogenesis of CVD.  相似文献   

14.
Liu  Jiankang  Mori  Akitane 《Neurochemical research》1999,24(11):1479-1497
Stress may contribute to aging acceleration and age-related degenerative diseases. Stress and adaptation to stress require numerous homeostatic adjustments including hormones, neurotransmitters, oxidants, and other mediators. The stress-induced hormones, neurotransmitters, and oxidants all have beneficial, but also harmful effects if out of balance. Therefore, the homeostasis of stress and adaptation should be governed by the hormone balance, neurotransmitter balance, and oxidant balance, as well as the interactions among these substances. The imbalance and the over-interaction of these balances may ultimately cause increased oxidant generation and oxidative damage to biomolecules. This increased oxidative damage may add to the oxidant burden associated with normal aerobic metabolism, which in itself, generates oxidants, causes accumulation of oxidative damage in mitochondria, and contributes to normal aging. Therefore, the stress-associated increase of oxidative damage may, in part, contribute to stress-associated aging acceleration and age-related neurodegenerative diseases.  相似文献   

15.
Inflammation has been linked to multiple degenerative and acute diseases as well as the aging process. Moreover, mitochondrial alterations play a central role in these processes. Mitochondria have an important role in pro-inflammatory signaling; similarly, pro-inflammatory mediators may also alter mitochondrial function. Both of these processes increase mitochondrial oxidative stress, promoting a vicious inflammatory cycle. Additionally, damage-associated molecular patterns derived from mitochondria could contribute to inflammasome formation and caspase-1 activation, while alterations in mitochondrial autophagy may cause inflammation. Strategies aimed at controlling excessive oxidative stress within mitochondria may represent both preventive and therapeutic interventions in inflammation.  相似文献   

16.
The mitochondrial electron transport chain is the major source for the production of oxygen radicals. Mitochondria-generated reactive oxygen species (mROS) have been implicated in decreasing the life span and contributing to age-related diseases (known as the free radical theory of aging). Recently, the serine/threonine kinase protein kinase D1 (PKD1) was identified as a mitochondrial sensor for oxidative stress. mROS-activated PKD regulates a radical-sensing signaling pathway, which relays mROS production to the induction of nuclear genes that mediate cellular detoxification and survival. This PKD regulated signaling pathway is the first known mitochondria located and mitochondrially regulated antioxidant system that protects these organelles and cells from oxidative stress-mediated damage or cell death. The identification of this and further intracellular protective signaling pathways provides an opportunity to manipulate the effects of mROS, and might provide the key to targeting aging effects and age-related diseases that have been linked to mitochondrial dysfunctions.  相似文献   

17.
Production of reactive oxygen species (ROS) is a tightly regulated process, and increased levels of ROS within mitochondria are the principal trigger not only for mitochondrial dysfunctions but, more in general, for the diseases associated with aging, thus representing a powerful signaling molecules. One of the key regulators of ROS production, mitochondrial dysfunction, and aging is the 66-kDa isoform of the growth factor adapter shc (p66shc) that is activated by stress and generates ROS within the mitochondria, driving cells to apoptosis. Accordingly, p66shc knockout animals are one of the best characterized genetic model of longevity.On the other hand, caloric restriction is the only non-genetic mechanism that is shown to increase life span. Several studies have revealed a complex network of signaling pathways modulated by nutrients, such as IGF-1, TOR, sirtuins, AMP kinase, and PGC-1α that are connected and converge to inhibit oxidative stresses within the mitochondria. Animal models in which components of these signaling pathways are induced or silenced present a general phenotype characterized by the deceleration of the aging process. This review will summarize the main findings in the process that link mitochondria to longevity and the connections between the different signaling molecules involved in this intriguing relationship.  相似文献   

18.
Physical exercise can be effective in preventing or ameliorating various diseases, including diabetes, cardiovascular diseases, neurodegenerative diseases, and cancer. However, not everyone may be able to participate in exercise due to illnesses, age-related frailty, or difficulty in long-term behavior change. An alternative option is to utilize pharmacological interventions that mimic the positive effects of exercise training. Recent studies have identified signaling pathways associated with the benefits of physical activity and discovered exercise mimetics that can partially simulate the systemic impact of exercise. This review describes the molecular targets for exercise mimetics and their effect on skeletal muscle and other tissues. We will also discuss the potential advantages of using natural products as a multi-targeting agent for mimicking the health-promoting effects of exercise.  相似文献   

19.
神经退化性疾病生物能量代谢和氧化应激研究进展   总被引:7,自引:0,他引:7  
衰老是导致几种常见的神经系统退化性疾病的主要危险因素,包括帕金森氏病(Parkinson’s disease PD),肌萎缩性侧索硬化(Amyotrophic lateral sclerosis,ALS),早老性痴呆(Alzheimer’s disease AD)和亨廷顿氏病(Huntington’s disease HD)。最近研究表明,神经退化性疾病涉及到线粒体缺陷,氧化应激等因素。在脑和其它组织中,老化可导致线粒体功能的损伤和氧化损伤的增强。PD病人中,已发现线粒体复合酶体Ⅰ活性降低,氧化损伤增加和抗氧化系统活性的改变。在几例家族性ALS病人中,也发现Cu、Zn超氧化物歧化酶(Cu,Zn SOD)基因的突变,导致Cu、Zn超氧化物歧化酶活性减低;散发的ALS病人氧化损伤增高。在HD病人中已发现能量代谢异常  相似文献   

20.
Cardiac mitochondrial bioenergetics, oxidative stress, and aging   总被引:2,自引:0,他引:2  
Mitochondria have been a central focus of several theories of aging as a result of their critical role in bioenergetics, oxidant production, and regulation of cell death. A decline in cardiac mitochondrial function coupled with the accumulation of oxidative damage to macromolecules may be causal to the decline in cardiac performance with age. In contrast, regular physical activity and lifelong caloric restriction can prevent oxidative stress, delay the onset of morbidity, increase life span, and reduce the risk of developing several pathological conditions. The health benefits of life long exercise and caloric restriction may be, at least partially, due to a reduction in the chronic amount of mitochondrial oxidant production. In addition, the available data suggest that chronic exercise may serve to enhance antioxidant enzyme activities, and augment certain repair/removal pathways, thereby reducing the amount of oxidative tissue damage. However, the characterization of age-related changes to cardiac mitochondria has been complicated by the fact that two distinct populations of mitochondria exist in the myocardium: subsarcolemmal mitochondria and interfibrillar mitochondria. Several studies now suggest the importance of studying both mitochondrial populations when attempting to elucidate the contribution of mitochondrial dysfunction to myocardial aging. The role that mitochondrial dysfunction and oxidative stress play in contributing to cardiac aging will be discussed along with the use of lifelong exercise and calorie restriction as countermeasures to aging. superoxide anion; longevity; postmitotic; calorie restriction; subsarcolemmal, interfibrillar, exercise  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号