首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We previously developed a synthetic cis-acting RNA ligase ribozyme with 3′-5′ joining activity termed “DSL” (designed and selected ligase). DSL was easily transformed into a trans-acting form because of its highly modular architecture. In this study, we investigated the modular properties and turnover capabilities of a trans-acting DSL, tDSL-1/GUAA. tDSL-1/GUAA exhibited remarkably high activity compared with the parental cis-acting DSL, and it attained a high turnover number. Taken together, the results indicate that a loop-receptor interaction plays a significant role in determining the activity of the trans-acting ribozyme and in its ability to perform multiple turnovers of the reaction.  相似文献   

3.
Position-effect variegation (PEV) is the epigenetic disruption of gene expression near the de novo–formed euchromatin-heterochromatin border. Heterochromatic cis-inactivation may be accompanied by the trans-inactivation of genes on a normal homologous chromosome in trans-heterozygous combination with a PEV-inducing rearrangement. We characterize a new genetic system, inversion In(2)A4, demonstrating cis-acting PEV as well as trans-inactivation of the reporter transgenes on the homologous nonrearranged chromosome. The cis-effect of heterochromatin in the inversion results not only in repression but also in activation of genes, and it varies at different developmental stages. While cis-actions affect only a few juxtaposed genes, trans-inactivation is observed in a 500-kb region and demonstrates а nonuniform pattern of repression with intermingled regions where no transgene repression occurs. There is no repression around the histone gene cluster and in some other euchromatic sites. trans-Inactivation is accompanied by dragging of euchromatic regions into the heterochromatic compartment, but the histone gene cluster, located in the middle of the trans-inactivated region, was shown to be evicted from the heterochromatin. We demonstrate that trans-inactivation is followed by de novo HP1a accumulation in the affected transgene; trans-inactivation is specifically favored by the chromatin remodeler SAYP and prevented by Argonaute AGO2.  相似文献   

4.
5.
6.
Genetic Control of Adh Expression in DROSOPHILA MELANOGASTER   总被引:5,自引:4,他引:1  
Natural variants displaying different levels of expression of the gene for alcohol dehydrogenase (Adh) were subjected to genetic mapping experiments. The strains studied carry one of the two common electrophoretic forms of the enzyme. The difference among Adh-fast strains appears to be due to multiple loci with trans-acting effects. Differences among Adh-slow strains are due to modifiers or quantitative sites located very close to the structural gene (less than 0.05 map unit) or part of it. The modifiers detected in the Adhs strains seem to operate only on the structural allele in the cis-position.—A modifier that affects the ratio of ADH levels in larvae and adults was also detected in the Adhs strains. This modifier is also closely linked to Adh and is cis-acting.  相似文献   

7.
8.
FK506-binding proteins (FKBPs) are cellular receptors for the immunosuppressant FK506 and rapamycin. They belong to the ubiquitous peptidyl-prolyl cis/trans isomerases (PPIases) family, which can catalyze the cis/trans isomerization of peptidyl-prolyl bond in peptides and proteins. In previous work, we revealed that mouse FKBP23 binds immunoglobulin binding protein (BiP), the major heat shock protein (Hsp) 70 chaperone in the ER, and the binding is interrelated with [Ca2+]. Furthermore, the binding can suppress the ATPase activity of BiP through the PPIase activity of FKBP23. In this work, FKBP23 is demonstrated to mediate functions of BiP by catalyzing the Pro117cis/trans conformational interconversion in the ATPase domain of BiP. This result may provide new understanding to the novel role of PPIase as a molecular switch.  相似文献   

9.
N-Ethylmaleimide-sensitive factor (NSF) is a homo-hexameric member of the AAA+ (ATPases associated with various cellular activities plus) family. It plays an essential role in most intracellular membrane trafficking through its binding to and disassembly of soluble NSF attachment protein (SNAP) receptor (SNARE) complexes. Each NSF protomer contains an N-terminal domain (NSF-N) and two AAA domains, a catalytic NSF-D1 and a structural NSF-D2. This study presents detailed mutagenesis analyses of NSF-N and NSF-D1, dissecting their roles in ATP hydrolysis, SNAP·SNARE binding, and complex disassembly. Our results show that a positively charged surface on NSF-N, bounded by Arg67 and Lys105, and the conserved residues in the central pore of NSF-D1 (Tyr296 and Gly298) are involved in SNAP·SNARE binding but not basal ATP hydrolysis. Mutagenesis of Sensor 1 (Thr373–Arg375), Sensor 2 (Glu440–Glu442), and Arginine Fingers (Arg385 and Arg388) in NSF-D1 shows that each region plays a discrete role. Sensor 1 is important for basal ATPase activity and nucleotide binding. Sensor 2 plays a role in ATP- and SNAP-dependent SNARE complex binding and disassembly but does so in cis and not through inter-protomer interactions. Arginine Fingers are important for SNAP·SNARE complex-stimulated ATPase activity and complex disassembly. Mutants at these residues have a dominant-negative phenotype in cells, suggesting that Arginine Fingers function in trans via inter-protomer interactions. Taken together, these data establish functional roles for many of the structural elements of the N domain and of the D1 ATP-binding site of NSF.  相似文献   

10.
11.
Many positive-strand RNA viruses encode genes that can function in trans, whereas other genes are required in cis for genome replication. The mechanisms underlying trans- and cis-preferences are not fully understood. Here, we evaluate this concept for hepatitis C virus (HCV), an important cause of chronic liver disease and member of the Flaviviridae family. HCV encodes five nonstructural (NS) genes that are required for RNA replication. To date, only two of these genes, NS4B and NS5A, have been trans-complemented, leading to suggestions that other replicase genes work only in cis. We describe a new quantitative system to measure the cis- and trans-requirements for HCV NS gene function in RNA replication and identify several lethal mutations in the NS3, NS4A, NS4B, NS5A, and NS5B genes that can be complemented in trans, alone or in combination, by expressing the NS3–5B polyprotein from a synthetic mRNA. Although NS5B RNA binding and polymerase activities can be supplied in trans, NS5B protein expression was required in cis, indicating that NS5B has a cis-acting role in replicase assembly distinct from its known enzymatic activity. Furthermore, the RNA binding and NTPase activities of the NS3 helicase domain were required in cis, suggesting that these activities play an essential role in RNA template selection. A comprehensive complementation group analysis revealed functional linkages between NS3-4A and NS4B and between NS5B and the upstream NS3–5A genes. Finally, NS5B polymerase activity segregated with a daclatasvir-sensitive NS5A activity, which could explain the synergy of this antiviral compound with nucleoside analogs in patients. Together, these studies define several new aspects of HCV replicase structure-function, help to explain the potency of HCV-specific combination therapies, and provide an experimental framework for the study of cis- and trans-acting activities in positive-strand RNA virus replication more generally.  相似文献   

12.
13.
Phenotypic variation among individuals in a population can be due to DNA sequence variation in protein coding regions or in regulatory elements. Recently, many studies have indicated that mutations in regulatory elements may be the major cause of phenotypic evolution. However, the mechanisms for evolutionary changes in gene expression are still not well understood. Here, we studied the relative roles of cis and trans regulatory changes in Saccharomyces cerevisiae cells to cope with heat stress. It has been found that the expression level of ~ 300 genes was induced at least two fold and that of ~ 500 genes was repressed at least two fold in response to heat shock. From the former set of genes, we randomly selected 65 genes that showed polymorphism(s) between the BY and RM strains for pyrosequencing analysis to explore the relative contributions of cis and trans regulatory variations to the expression divergence between BY and RM. Our data indicated that the expression divergence between BY and RM was mainly due to trans regulatory variations under either the normal condition or the heat stress condition. However, the relative contribution of trans regulatory variation was decreased from 76.9% to 61.5% after the heat shock stress. These results indicated that the cis regulatory variation may play an important role in the adaption to heat stress. In our data, 43.1% (28 genes) of the 65 genes showed the same trend of cis or trans variation effect after the heat shock stress, 35.4% (23 genes) showed an increased cis variation effect and 21.5% (14 genes) showed an increased trans variation effect after the heat shock stress. Thus, our data give insights into the relative roles of cis and trans variations in response to heat shock in yeast.  相似文献   

14.
15.
To assign the observed vibrationsl modes in the resonance Raman spectrum of the retinylidene chromophore of rhodopsin, we have studied chemically modified retinals. The series of analogs investigated are the n-butyl retinals substituted at C9 and C13. The results obtained for the 11-cis isomer have clearly assigned the CCH3 vibrational frequencies observed in the spectrum of the retinylidene chromophore. The data show that the C(9)CH3 stretching vibration can be assigned to the vibrational mode observed in the 1017 cm?1 region, and the vibration detected at 997 cm?1 can be assigned to the C(13CH3 vibration. The C(5)CH3 stretching mode does not contribute to the vibrations observed in this region. The splitting in the C(n)CH3 (n = 9, 13) vibration is characteristic of the 11-cis conformation. The results on the modified retinals do not support the hypothesis that the splitting arises from equilibrium mixtures of 11-cis, 12-s-cis and 11-cis, 12-s-trans in solution. Thus, this splitting cannot be used to determine whether the chromophore in rhodopsin is in a 12-s-cis or 12-s-trans conformation. However, our results demonstrate that there are other vibrational modes in the spectra which are sensitive to this conformational equilibrium and we use the presence of a strong ~ 1271 cm?1 mode in bovine and squid rhodopsin spectra as an indication that the chromophore in these pigments is 11-cis, 12-s-trans.  相似文献   

16.
The yeast protein Prp19p is essential for pre-mRNA splicing and is associated with the spliceosome concurrently with or just after dissociation of U4 small nuclear RNA. In splicing extracts, Prp19p is associated with several other proteins in a large protein complex of unknown function, but at least one of these proteins is also essential for splicing (W.-Y. Tarn, C.-H. Hsu, K.-T. Huang, H.-R. Chen, H.-Y. Kao, K.-R. Lee, and S.-C. Cheng, EMBO J. 13:2421–2431, 1994). To identify proteins in the Prp19p-associated complex, we have isolated trans-acting mutations that exacerbate the phenotypes of conditional alleles of prp19, using the ade2-ade3 sectoring system. A novel splicing factor, Snt309p, was identified through such a screen. Although the SNT309 gene was not essential for growth of Saccharomyces cerevisiae under normal conditions, yeast cells containing a null allele of the SNT309 gene were temperature sensitive and accumulated pre-mRNA at the nonpermissive temperature. Far-Western blot analysis revealed direct interaction between Prp19p and Snt309p. Snt309p was shown to be a component of the Prp19p-associated complex by Western blot analysis. Immunoprecipitation studies demonstrated that Snt309p was also a spliceosomal component and associated with the spliceosome in the same manner as Prp19p during spliceosome assembly. These results suggest that the functions of Prp19p and Snt309p in splicing may require coordinate action of these two proteins.  相似文献   

17.
Porcine liver carboxylesterase (carboxylic-ester hydrolase, EC 3.1.1.1) hydrolyses trans isomers of three different methyl 3-arylacrylates approximately one order of magnitude faster than the corresponding cis isomers. This phenomenon can be used for preparative production of cis esters from their trans counterparts as exemplified by methyl cinnamate. A solution of commercial, predominantly trans methyl cinnamate was irradiated by ultraviolet light and the resultant mixture of trans and cis esters was passed through a column packed with immobilized esterase. The effluent contained mainly trans cinnamic acid and cis methyl cinnamate. The latter was then extracted with methylene chloride, and the cis ester was isolated by evaporating the solvent. By esterifying the co-produced trans acid, the process can be made continuous.  相似文献   

18.
The RNA genomes of plus-strand RNA viruses have the ability to form secondary and higher-order structures that contribute to their stability and to their participation in inter- and intramolecular interactions. Those structures that are functionally important are called cis-acting RNA elements because their functions cannot be complemented in trans. They can be involved not only in RNA/RNA interactions but also in binding of viral and cellular proteins during the complex processes of translation, RNA replication and encapsidation. Most viral cis-acting RNA elements are located in the highly structured 5′- and 3′-nontranslated regions of the genomes but sometimes they also extend into the adjacent coding sequences. In addition, some cis-acting RNA elements are embedded within the coding sequences far away from the genomic ends. Although the functional importance of many of these structures has been confirmed by genetic and biochemical analyses, their precise roles are not yet fully understood. In this review we have summarized what is known about cis-acting RNA elements in nine families of human and animal plus-strand RNA viruses with an emphasis on the most thoroughly characterized virus families, the Picornaviridae and Flaviviridae.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号