共查询到20条相似文献,搜索用时 0 毫秒
1.
本文回顾了我们在哺乳动物视觉皮层的建模工作.利用初级视觉皮层的大规模神经元网络模型,我们解释了初级视觉皮层里“简单”与“复杂”神经元现象的网络机制.所谓的“简单”细胞对视觉刺激的反应近似线性,而“复杂”细胞对视觉刺激是非线性的.我们的模型成功地再现了简单和复杂细胞分布的实验数据. 相似文献
2.
Shelley M McLaughlin D Shapley R Wielaard J 《Journal of computational neuroscience》2002,13(2):93-109
This paper reports on the consequences of large, activity dependent, synaptic conductances for neurons in a large-scale neuronal network model of the input layer 4C of the Macaque primary visual cortex (Area V1). This high conductance state accounts for experimental observations about orientation selectivity, dynamics, and response magnitude (D. McLaughlin et al. (2000) Proc. Natl. Acad. Sci. USA 97: 8087–8092), and the linear dependence of Simple cells on visual stimuli (J. Wielaard et al. (2001) J. Neuroscience 21: 5203–5211). The source of large conductances in the model can be traced to inhibitory corticocortical synapses, and the model's predictions of large conductance changes are consistent with recent intracellular measurements (L. Borg-Graham et al. (1998) Nature 393: 369–373; J. Hirsch et al. (1998) J. Neuroscience 15: 9517–9528; J.S. Anderson et al. (2000) J. Neurophysiol. 84: 909–926). During visual stimulation, these conductances are large enough that their associated time-scales become the shortest in the model cortex, even below that of synaptic interactions. One consequence of this activity driven separation of time-scales is that a neuron responds very quickly to temporal changes in its synaptic drive, with its intracellular membrane potential tracking closely an effective reversal potential composed of the instantaneous synaptic inputs. From the effective potential and large synaptic conductance, the spiking activity of a cell can be expressed in an interesting and simplified manner, with the result suggesting how accurate and smoothly graded responses are achieved in the model network. Further, since neurons in this high-conductance state respond quickly, they are also good candidates as coincidence detectors and burst transmitters. 相似文献
3.
The nuclear envelope (NE) is a highly active structure with a specific set of nuclear envelope proteins acting in diverse cellular events. SUN proteins are conserved NE proteins among eukaryotes. Although they form nucleocytoplasmic linkage complexes in metazoan cells, their functions in the plant kingdom are unknown. To understand the function of plant SUN proteins, in this study we first investigated the dynamics of Arabidopsis SUN proteins during mitosis in Arabidopsis roots and cultured cells. For this purpose, we performed dual and triple visualization of these proteins, microtubules, chromosomes, and endoplasmic reticulum (ER) in cultured cells, and observed their dynamics during mitosis using a high-speed spinning disk confocal microscope. The localizations of SUN proteins changed dynamically during mitosis, tightly coupled with NE dynamics. Moreover, NE re-formation marked with SUN proteins is temporally and spatially coordinated with plant-specific microtubule structures such as phragmoplasts. Finally, the analysis with gene knockdowns of AtSUN1 and AtSUN2 indicated that they are necessary for the maintenance and/or formation of polarized nuclear shape in root hairs. These results suggest that Arabidopsis SUN proteins function in the maintenance or formation of nuclear shape as components of the nucleocytoskeletal complex. 相似文献
4.
5.
This article describes a large-scale model of turtle visual cortex that simulates the propagating waves of activity seen in real turtle cortex. The cortex model contains 744 multicompartment models of pyramidal cells, stellate cells, and horizontal cells. Input is provided by an array of 201 geniculate neurons modeled as single compartments with spike-generating mechanisms and axons modeled as delay lines. Diffuse retinal flashes or presentation of spots of light to the retina are simulated by activating groups of geniculate neurons. The model is limited in that it does not have a retina to provide realistic input to the geniculate, and the cortex and does not incorporate all of the biophysical details of real cortical neurons. However, the model does reproduce the fundamental features of planar propagating waves. Activation of geniculate neurons produces a wave of activity that originates at the rostrolateral pole of the cortex at the point where a high density of geniculate afferents enter the cortex. Waves propagate across the cortex with velocities of 4 m/ms to 70 m/ms and occasionally reflect from the caudolateral border of the cortex. 相似文献
6.
目的:探讨乳酸对原代培养的皮质神经元存活率的影响.方法:体外原代培养大鼠大脑皮质神经元,将神经元分为两部分:①添加不同浓度乳酸(0,5,10,20 mmol/L)使培养液pH值分别降至7.35,7.15,6.95和6.00,观察神经元存活率;②添加不同浓度乳酸(0,5,10,20 mmol/L)后,保持培养液pH值为7.35,分别观察神经元存活率,分析乳酸对神经元的作用是通过下调pH值还是乳酸本身的作用.结果:①神经元存活率随pH降低而降低,与pH值为7.35组相比差异有显著性.②不同乳酸浓度对神经元存活率也有影响,神经元存活率降低,与对照组相比差异明显.③pH下调组神经元存活率显著低于相应乳酸作用组.结论:乳酸升高造成pH降低与神经元存活率关系密切,过量乳酸亦可不依赖下调pH值的作用发挥神经毒性. 相似文献
7.
《Current biology : CB》2021,31(19):4327-4339.e6
8.
9.
Calcium uptake by the cortical synaptosomes in a rodent (Fischer rat) and an insectivore shrew (Suncus murinus) was detected as a parameter reflecting molecular dysfunction of the aging brain. The change in calcium uptake by the cortical synaptosomes in both species was concomitant which showed less than half the capacity at 24 months old animals compared with those at 8 months old. On the other hand, 5-hydroxytryptamine binding and imipramine binding to the membrane fraction of aging rat brain cortex was not altered in terms of binding capacity along with aging, while, in Suncus, the binding of both serotonergic ligands declined with aging. In order to elucidate decreased serotonergic activity in human demented aged brain, together with declining activity in neurotransmitting systems detectable as a function of calcium uptake by the cortical synaptosomes, Suncus may be an appropriate animal model for studying physiological aging processes in the mammalian brain cortex.Special Issue Dedicated to Dr. Abel Lajtha. 相似文献
10.
Mattioli E Columbaro M Capanni C Maraldi NM Cenni V Scotlandi K Marino MT Merlini L Squarzoni S Lattanzi G 《Cell death and differentiation》2011,18(8):1305-1315
Lamin A is a nuclear lamina constituent expressed in differentiated cells. Mutations in the LMNA gene cause several diseases, including muscular dystrophy and cardiomyopathy. Among the nuclear envelope partners of lamin A are Sad1 and UNC84 domain-containing protein 1 (SUN1) and Sad1 and UNC84 domain-containing protein 2 (SUN2), which mediate nucleo-cytoskeleton interactions critical to the anchorage of nuclei. In this study, we show that differentiating human myoblasts accumulate farnesylated prelamin A, which elicits upregulation and recruitment of SUN1 to the nuclear envelope and favors SUN2 enrichment at the nuclear poles. Indeed, impairment of prelamin A farnesylation alters SUN1 recruitment and SUN2 localization. Moreover, nuclear positioning in myotubes is severely affected in the absence of farnesylated prelamin A. Importantly, reduced prelamin A and SUN1 levels are observed in Emery-Dreifuss muscular dystrophy (EDMD) myoblasts, concomitant with altered myonuclear positioning. These results demonstrate that the interplay between SUN1 and farnesylated prelamin A contributes to nuclear positioning in human myofibers and may be implicated in pathogenetic mechanisms. 相似文献
11.
Recent experiments in the developing mammalian visual cortex have revealed that gap junctions couple excitatory cells and potentially influence the formation of chemical synapses. In particular, cells that were coupled by a gap junction during development tend to share an orientation preference and are preferentially coupled by a chemical synapse in the adult cortex, a property that is diminished when gap junctions are blocked. In this work, we construct a simplified model of the developing mouse visual cortex including spike-timing-dependent plasticity of both the feedforward synaptic inputs and recurrent cortical synapses. We use this model to show that synchrony among gap-junction-coupled cells underlies their preference to form strong recurrent synapses and develop similar orientation preference; this effect decreases with an increase in coupling density. Additionally, we demonstrate that gap-junction coupling works, together with the relative timing of synaptic development of the feedforward and recurrent synapses, to determine the resulting cortical map of orientation preference. 相似文献
12.
AbstractPurpose: In physical therapy for post-stroke patients, we often experience cases in which unpleasant emotions cause abnormal muscle tonus. Previously, we suggested that the magnitude of spinal motor neuron excitability was correlated with the grade of muscle tonus. Therefore, spinal motor neuron excitability was considered to be a useful index to evaluate the influence of unpleasant emotions on muscle tonus. In this study, we investigated whether unpleasant emotions evoked by visual stimuli affected the excitability of spinal motor neurons.Materials and Methods: The F-waves, an indicator of spinal motor neuron excitability, were measured in 19 healthy adult volunteers. Firstly, for the rest trial, F-waves were measured during relaxation to determine the baseline of spinal motor neuron excitability. Following the rest trial, the unpleasant trial was conducted in which F-waves were measured while the subjects viewed an unpleasant picture for 1?min. After the unpleasant trial, F-waves were measured during relaxation. For the control condition, F-waves were measured while the subjects viewed a neutral picture instead of the unpleasant picture. The recorded F-wave data were analysed for persistence and the F/M amplitude ratio.Results: Persistence and the F/M amplitude ratio were significantly greater during the unpleasant trial than during the rest trial. In the control condition, there was no significant difference in persistence and the F/M amplitude ratio compared with the three trials.Conclusions: Our findings indicate that unpleasant emotions may affect spinal motor neuron excitability. Therefore, learning how to control emotions should be important aspect of physical therapy. 相似文献
13.
Axo-dendritic synaptic profiles were quantified along the whole depth of the visual cortex of 10-day-old male and female rats. In both sexes the numerical density of synaptic profiles on spine-like structures was greater than the numerical density of synapses on dendritic shafts. Females had a significantly greater numerical density of synaptic profiles on spine-like structures, than did males at a distance of 200–400 and 500–600 μm from the pia surface, which corresponds to layers II–III and IV of the cortex, respectively. A small percentage (2%–4%) of spine-like structures received two presynaptic terminals. This type of double synapses was three times more abundant in females. No sex differences were found in the numerical density of synapses on dendritic shafts in any cortical layer. 1994 John Wiley & Sons, Inc. 相似文献
14.
A family of moving 'random-line' patterns was developed and used to study the directional tuning of 91 single units in cat primary visual cortex (V1). The results suggest that, in addition to the well-known orientation-dependent mechanism, there is also some kind of orientation-independent mechanism underlying the direction selectivity. The directional tuning of the neurons varies in accordance with the increase of orientation or non-orientation element in the stimulus. 相似文献
15.
Deborah Apthorp D. Samuel Schwarzkopf Christian Kaul Bahador Bahrami David Alais Geraint Rees 《Proceedings. Biological sciences / The Royal Society》2013,280(1752)
Temporal integration in the visual system causes fast-moving objects to generate static, oriented traces (‘motion streaks’), which could be used to help judge direction of motion. While human psychophysics and single-unit studies in non-human primates are consistent with this hypothesis, direct neural evidence from the human cortex is still lacking. First, we provide psychophysical evidence that faster and slower motions are processed by distinct neural mechanisms: faster motion raised human perceptual thresholds for static orientations parallel to the direction of motion, whereas slower motion raised thresholds for orthogonal orientations. We then used functional magnetic resonance imaging to measure brain activity while human observers viewed either fast (‘streaky’) or slow random dot stimuli moving in different directions, or corresponding static-oriented stimuli. We found that local spatial patterns of brain activity in early retinotopic visual cortex reliably distinguished between static orientations. Critically, a multivariate pattern classifier trained on brain activity evoked by these static stimuli could then successfully distinguish the direction of fast (‘streaky’) but not slow motion. Thus, signals encoding static-oriented streak information are present in human early visual cortex when viewing fast motion. These experiments show that motion streaks are present in the human visual system for faster motion. 相似文献
16.
17.
Interactions between dopamine (DA) and glutamate systems in the prefrontal cortex (PFC) are important in addiction and other psychiatric disorders. Here, we examined DA receptor regulation of NMDA receptor surface expression in postnatal rat PFC neuronal cultures. Immunocytochemical analysis demonstrated that surface expression (synaptic and non-synaptic) of NR1 and NR2B on PFC pyramidal neurons was increased by the D1 receptor agonist SKF 81297 (1 microM, 5 min). Activation of protein kinase A (PKA) did not alter NR1 distribution, indicating that PKA does not mediate the effect of D1 receptor stimulation. However, the tyrosine kinase inhibitor genistein (50 microM, 30 min) completely blocked the effect of SKF 81297 on NR1 and NR2B surface expression. Protein cross-linking studies confirmed that SKF 81297 (1 microM, 5 min) increased NR1 and NR2B surface expression, and further showed that NR2A surface expression was not affected. Genistein blocked the effect of SKF 81297 on NR1 and NR2B. Surface-expressed immunoreactivity detected with a phospho-specific antibody to tyrosine 1472 of NR2B also increased after D1 agonist treatment. Our results show that tyrosine phosphorylation plays an important role in the trafficking of NR2B-containing NMDA receptors in PFC neurons and the regulation of their trafficking by DA receptors. 相似文献
18.
A family of moving ‘random-line’ patterns was developed and used to study the directional tuning of 91 single units in cat primary visual cortex (V1). The results suggest that, in addition to the well-known orientation-dependent mechanism, there is also some kind of orientationindependent mechanism underlying the direction selectivity. The directional tuning of the neurons varies in accordance with the increase of orientation or non-orientation element in the stimulus. 相似文献
19.
In understanding how visual scene is processed in visual cortex, it has been an intriguing problem for theoretical and experimental
neuroscientists to examine the relationship between visual stimuli and the induced responses of visual cortex. In particular,
it is less explored whether and how the collective responses of visual neurons are patterned to reflect the geometrical regularities.
In this paper, through a computation model and statistical analysis, we show that the orientation preference maps induced
from correlated visual stimuli exhibit geometrical regularities similar as observed in natural images. 相似文献
20.
Using a patch-clamp technique, we studied the biophysical properties of large-conductance channels in the nuclear envelope
of rat cerebellar Purkinje neurons. Our experiments showed that channels with identical conductance, selectivity, and kinetics
are expressed in the external and internal nuclear membranes of these cells. These channels connect the perinuclear space
with the cyto-and nucleoplasm; they are not channels of the complex of the nuclear pores for passive diffusion of ions and
small molecules, as was believed earlier [17]. We hypothesize that large-conductance cationic channels in the membranes of
the nuclear envelope are identical to ion channels of the endoplasmic reticulum and are necessary for functioning of the intermembrane
space of the envelope as a calcium store.
Neirofiziologiya/Neurophysiology, Vol. 39, No. 2, pp. 113–118, March–April, 2007. 相似文献