首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Plant receptor-like protein kinases (RLKs) are transmembrane proteins with an extracellular domain and an intracellular kinase domain, which enable plant perceiving diverse extracellular stimuli to trigger the intracellular signal transduction. The somatic embryogenesis receptor kinases (SERKs) code the leucine-rich-repeat receptor-like kinase (LRR-RLK), and have been demonstrated to associate with multiple ligand-binding receptors to regulate plant growth, root development, male fertility, stomatal development and movement, and immune responses. Here, we focus on the progress made in recent years in understanding the versatile functions of Arabidopsis SERK proteins, and review SERK proteins as co-receptor to perceive different endogenous and environmental cues in different signaling pathway, and discuss how the kinase activity of SERKs is regulated by various modification.  相似文献   

3.
The present study reports a natural variation in microRNA172 (MIR172) family members isolated from six species of genus Brassica. The analysis of nucleotide polymorphism across 44 Brassica MIR172 homologs revealed a higher conservation in the predicted precursors relative to flanking regions. Single nucleotide polymorphisms (SNPs) were detected in miRNA and miRNA*. The 21-nt miRNA sequence was conserved in all MIR172 members except MIR172a. However, the miRNA* sequence was conserved only in MIR172a compared to A. thaliana. Non-canonical Brassica variants of precursor miR172a were detected wherein SNP at 5′ terminal in mature miR172a resulted in a sequence identical to mature miR172e. SNPs and indels in precursors resulted in varied stem-loop structures of differing stabilities (ΔG) implying a differential efficiency of miRNA biogenesis. A sequence based phylogram revealed ortholog specific groupings of MIR172 irrespective of genetic background. A Northern analysis in Brassica juncea displayed the cumulative expression of miR172 isoforms in all tissues representing different developmental stages with levels gradually increasing from vegetative to reproductive stages. Detection of high content of miR172 in roots indicates the possibility of additional roles of Brassica miR172 in root development.  相似文献   

4.
5.
Pectins are complex cell wall polysaccharides important for many aspects of plant development. Recent studies have discovered extensive physical interactions between pectins and other cell wall components, implicating pectins in new molecular functions. Pectins are often localized in spatially‐restricted patterns, and some of these non‐uniform pectin distributions contribute to multiple aspects of plant development, including the morphogenesis of cells and organs. Furthermore, a growing number of mutants affecting cell wall composition have begun to reveal the distinct contributions of different pectins to plant development. This review discusses the interactions of pectins with other cell wall components, the functions of pectins in controlling cellular morphology, and how non‐uniform pectin composition can be an important determinant of developmental processes.  相似文献   

6.
7.
Plastids, found in plants and some parasites, are of endosymbiotic origin. The best-characterized plastid is the plant cell chloroplast. Plastids provide essential metabolic and signaling functions, such as the photosynthetic process in chloroplasts. However, the role of plastids is not limited to production of metabolites. Plastids affect numerous aspects of plant growth and development through biogenesis, varying functional states and metabolic activities. Examples include, but are not limited to, embryogenesis, leaf development, gravitropism, temperature response and plant-microbe interactions. In this review, we summarize the versatile roles of plastids in plant growth and development.  相似文献   

8.
9.
10.
11.
Hu  Ziwei  Shen  Xiuping  Xiang  Xun  Cao  Jiashu 《Plant molecular biology》2019,101(6):537-550
Plant Molecular Biology - MIR159/319 have conserved evolution and diversified function after WGT in Brassica campestris, both of them can lead pollen vitality and germination abnormality,...  相似文献   

12.
RETINOBLASTOMA-RELATED (RBR) proteins are plant homologs of the human tumor suppressor pRB. Similar to their animal counterparts they have roles in cell cycle regulation and differentiation. We discuss recent findings of the evolution of RBR functions ranging from a molecular ruler and metabolic integrator in algae to a coordinator of differentiation in gametophytes. Genetic analysis and manipulation of protein levels during gametophytic and post-embryonic plant development are now providing new insights into the function of RBR in stem cell maintenance, cell specification and differentiation. We briefly explain interactions of RBR with chromatin-modifying complexes that appear to be a central underlying molecular mechanism during developmental transitions.  相似文献   

13.
Multiple roles of proline in plant stress tolerance and development   总被引:3,自引:0,他引:3  
The recent progresses in the research on proline will be described, focusing on plants and covering proline metabolism and signal transduction as well as the role of this imino acid in stress response. Furthermore, the recently described developmental role of proline in flowering and reproduction will be illustrated and discussed.   相似文献   

14.
15.
Zinc (Zn) is essential for normal plant growth and development. The Zn-regulated transporter, iron-regulated transporter (IRT)-like protein (ZIP) family members are involved in Zn transport and cellular Zn homeostasis throughout the domains of life. In this study, we have characterized four ZIP transporters from Arabidopsis thaliana (IRT3, ZIP4, ZIP6, and ZIP9) to better understand their functional roles. The four ZIP proteins can restore the growth defect of a yeast Zn uptake mutant and are upregulated under Zn deficiency. Single and double mutants show no phenotypes under Zn-sufficient or Zn-limited growth conditions. In contrast, triple and quadruple mutants show impaired growth irrespective of external Zn supply due to reduced Zn translocation from root to shoot. All four ZIP genes are highly expressed during seed development, and siliques from all single and higher-order mutants exhibited an increased number of abnormal seeds and decreased Zn levels in mature seeds relative to wild type. The seed phenotypes could be reversed by supplementing the soil with Zn. Our data demonstrate that IRT3, ZIP4, ZIP6, and ZIP9 function redundantly in maintaining Zn homeostasis and seed development in A. thaliana.  相似文献   

16.
Socialization processes lead to creation and differentiation of social relationships. It is often difficult to qualify them, especially due to ontogenic changes of social behavior. In this paper, an attempt is made to assess the role of each partner in a dyad by defining the quality of their overall relationship. A Social Investment Index (SII) was devised to describe these roles throughout ontogeny. SII is expressed as (G% — R%)/2, where G% and R% represent the difference between the sum of cohesive behaviors and that of disruptive behaviors divided by the overall sum of these behaviors given (G%) or received (R%) by one individual in a dyad. Results from a longitudinal study of the development of social behavior in one infant mangabey (Cercocebus albigena albigena) are used as an example. The developmental changes of the SII are presented in three dyads in a single-male group: mother-infant; “aunt”-infant; and juvenile male-infant.  相似文献   

17.
18.
The multifaceted roles of FLOWERING LOCUS T in plant development   总被引:3,自引:0,他引:3  
One of the key developmental processes in flowering plants is the differentiation of the shoot apical meristem into a floral meristem. This transition is regulated through the integration of environmental and endogenous stimuli, involving a complex, hierarchical signalling network. In arabidopsis, the FLOWERING LOCUS T (FT) protein, a mobile signal recognized as a major component of florigen, has a central position in mediating the onset of flowering. FT-like genes seem to be involved in regulating the floral transition in all angiosperms examined to date. Evidence from molecular evolution studies suggests that the emergence of FT-like genes coincided with the evolution of the flowering plants. Hence, the role of FT in floral promotion is conserved, but appears to be restricted to the angiosperms. Besides flowering, FT-like proteins have also been identified as major regulatory factors in a wide range of developmental processes including fruit set, vegetative growth, stomatal control and tuberization. These multifaceted roles of FT-like proteins have resulted from extensive gene duplication events, which occurred independently in nearly all modern angiosperm lineages, followed by sub- or neo-functionalization. This review assesses the plethora of roles that FT-like genes have acquired during evolution and their implications in plant diversity, adaptation and domestication.  相似文献   

19.
20.
Hox genes encode homeodomain-containing proteins that control embryonic development in multiple contexts. Up to 30 Hox genes, distributed among all four clusters, are expressed during mammalian kidney morphogenesis, but functional redundancy between them has made a detailed functional account difficult to achieve. We have investigated the role of the HoxD cluster through comparative molecular embryological analysis of a set of mouse strains carrying targeted genomic rearrangements such as deletions, duplications, and inversions. This analysis allowed us to uncover and genetically dissect the complex role of the HoxD cluster. Regulation of metanephric mesenchyme-ureteric bud interactions and maintenance of structural integrity of tubular epithelia are differentially controlled by some Hoxd genes during renal development, consistent with their specific expression profiles. We also provide evidence for a kidney-specific form of colinearity that underlies the differential expression of two distinct sets of genes located on both sides and overlapping at the Hoxd9 locus. These insights further our knowledge of the genetic control of kidney morphogenesis and may contribute to understanding certain congenital kidney malformations, including polycystic kidney disease and renal hypoplasia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号