首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ubiquitination is an essential post-translational modification that regulates most cellular processes. The assembly of ubiquitin into polymeric chains by E3 ubiquitin ligases underlies the pleiotropic functions ubiquitin chains regulate. Ubiquitin chains assembled via the N-terminal methionine, termed Met1-linked ubiquitin chains or linear ubiquitin chains, have emerged as essential signalling scaffolds that regulate pro-inflammatory responses, anti-viral interferon responses, cell death and xenophagy of bacterial pathogens downstream of innate immune receptors. Met1-linked ubiquitin chains are exclusively assembled by the linear ubiquitin chain assembly complex, LUBAC, and are disassembled by the deubiquitinases OTULIN and CYLD. Genetic defects that perturb the regulation of Met1-linked ubiquitin chains causes severe immune-related disorders, illustrating their potent signalling capacity. Here, we review the current knowledge about the cellular machinery that conjugates, recognises, and disassembles Met1-linked ubiquitin chains, and discuss the function of this unique posttranslational modification in regulating inflammation, cell death and immunity to pathogens.Subject terms: Signal transduction, Antimicrobial responses, Cell death and immune response

  相似文献   

2.
The membrane cytoskeleton linker ezrin participates in several functions downstream of the receptor Met in response to Hepatocyte Growth Factor (HGF) stimulation. Here we report a novel interaction of ezrin with a HECT E3 ubiquitin ligase, WWP1/Aip5/Tiul1, a potential oncogene that undergoes genomic amplification and overexpression in human breast and prostate cancers. We show that ezrin binds to the WW domains of WWP1 via the consensus motif PPVY(477) present in ezrin's C-terminus. This association results in the ubiquitylation of ezrin, a process that requires an intact PPVY(477) motif. Interestingly ezrin ubiquitylation does not target the protein for degradation by the proteasome. We find that ezrin ubiquitylation by WWP1 in epithelial cells leads to the upregulation of Met level in absence of HGF stimulation and increases the response of Met to HGF stimulation as measured by the ability of the cells to heal a wound. Interestingly this effect requires ubiquitylated ezrin since it can be rescued, after depletion of endogenous ezrin, by wild type ezrin but not by a mutant of ezrin that cannot be ubiquitylated. Taken together our data reveal a new role for ezrin in Met receptor stability and activity through its association with the E3 ubiquitin ligase WWP1. Given the role of Met in cell proliferation and tumorigenesis, our results may provide a mechanistic basis for understanding the role of ezrin in tumor progression.  相似文献   

3.
Organ-specific stem cells play key roles in maintaining the epithelial cell layers of lung. Bronchioalveolar stem cells (BASCs) are distal lung epithelial stem cells of adult mice. Alveolar type 2 (AT2) cells have important functions and serve as progenitor cells of alveolar type 1 (AT1) cells to repair the epithelium when they are injured. Hepatocyte growth factor (HGF) elicits mitogenic, morphogenic, and anti-apoptotic effects on lung epithelial cells through tyrosine phosphorylation of Met receptor, and thus is recognized as a pulmotrophic factor. To understand which cells HGF targets in lung, we identified the cells expressing Met by immunofluorescence assay. Met was strongly expressed in BASCs, which expressed an AT2 cell marker, pro-SP-C, and a club cell marker, CCSP. In alveoli, we found higher expression of Met in primary AT2 than in AT1 cells, which was confirmed using primary AT2 cells. We further examined the mitogenic activity of HGF in AT2-cell-derived alveolar-like cysts (ALCs) in 3D culture. Multicellular ALCs expressed Met, and HGF enhanced the ALC production. Taking these findings together, BASCs could also be an important target for HGF, and HGF-Met signaling could function more potent on cells that have greater multipotency in adult lung.Key words: HGF, Met, BASC, alveolus, ALC  相似文献   

4.
5.
6.

Background

The receptor tyrosine kinase Met is involved in the progression and metastasis of numerous human cancers. Although overexpression and autocrine activation of the Met signaling pathway are commonly found in human cancers, mutational activation of Met has been observed in small cell and non-small cell lung cancers, lung adenocarcinomas, renal carcinomas, and mesotheliomas.

Methodology/Principal Findings

To investigate the influence of mutationally activated Met in tumorigenesis, we utilized a novel mouse model. Previously, we observed that various Met mutations developed unique mutation-specific tumor spectra on a C57BL/6 background. Here, we assessed the effect of genetic background on the tumorigenic potential of mutationally activated Met. For this purpose, we created congenic knock-in lines of the Met mutations D1226N, M1248T, and Y1228C on the FVB/N background. Consistent with the mutation-specific tumor spectra, several of the mutations were associated with the same tumor types as observed on C57BL/6 background. However, on the FVB/N background most developed a high incidence of mammary carcinomas with diverse histopathologies.

Conclusions/Significance

This study demonstrates that on two distinct mouse backgrounds, Met is able to initiate tumorigenesis in multiple cell types, including epithelial, hematopoietic, and endothelial. Furthermore, these observations emphasize that even a modest increase in Met activation can initiate tumorigenesis with both the Met mutational spectra and host background having profound influence on the type of tumor generated. Greater insight into the interaction of genetic modifiers and Met signaling will significantly enhance our ability to tailor combination therapies for Met-driven cancers.  相似文献   

7.
Decorin, a member of the small leucine-rich proteoglycan gene family, impedes tumor cell growth by down-regulating the epidermal growth factor receptor. Decorin has a complex binding repertoire, thus, we predicted that decorin would modulate the bioactivity of other tyrosine kinase receptors. We discovered that decorin binds directly and with high affinity (Kd = ∼1.5 nM) to Met, the receptor for hepatocyte growth factor (HGF). Binding of decorin to Met is efficiently displaced by HGF and less efficiently by internalin B, a bacterial Met ligand. Interaction of decorin with Met induces transient receptor activation, recruitment of the E3 ubiquitin ligase c-Cbl, and rapid intracellular degradation of Met (half-life = ∼6 min). Decorin suppresses intracellular levels of β-catenin, a known downstream Met effector, and inhibits Met-mediated cell migration and growth. Thus, by antagonistically targeting multiple tyrosine kinase receptors, decorin contributes to reduction in primary tumor growth and metastastic spreading.  相似文献   

8.
9.
Ubiquitylation is one of the most abundant and versatile post-translational modifications (PTMs) in cells. Its versatility arises from the ability of ubiquitin to form eight structurally and functionally distinct polymers, in which ubiquitin moieties are linked via one of seven Lys residues or the amino terminus. Whereas the roles of Lys48- and Lys63-linked polyubiquitin in protein degradation and cellular signalling are well characterized, the functions of the remaining six 'atypical' ubiquitin chain types (linked via Lys6, Lys11, Lys27, Lys29, Lys33 and Met1) are less well defined. Recent developments provide insights into the mechanisms of ubiquitin chain assembly, recognition and hydrolysis and allow detailed analysis of the functions of atypical ubiquitin chains. The importance of Lys11 linkages and Met1 linkages in cell cycle regulation and nuclear factor-κB activation, respectively, highlight that the different ubiquitin chain types should be considered as functionally independent PTMs.  相似文献   

10.
Nuclear factor κB (NF-κB) activation in tumor necrosis factor, interleukin-1, and Toll-like receptor pathways requires Lys63-linked nondegradative polyubiquitination. A20 is a specific feedback inhibitor of NF-κB activation in these pathways that possesses dual ubiquitin-editing functions. While the N-terminal domain of A20 is a deubiquitinating enzyme (DUB) for Lys63-linked polyubiquitinated signaling mediators such as TRAF6 and RIP, its C-terminal domain is a ubiquitin ligase (E3) for Lys48-linked degradative polyubiquitination of the same substrates. To elucidate the molecular basis for the DUB activity of A20, we determined its crystal structure and performed a series of biochemical and cell biological studies. The structure reveals the potential catalytic mechanism of A20, which may be significantly different from papain-like cysteine proteases. Ubiquitin can be docked onto a conserved A20 surface; this interaction exhibits charge complementarity and no steric clash. Surprisingly, A20 does not have specificity for Lys63-linked polyubiquitin chains. Instead, it effectively removes Lys63-linked polyubiquitin chains from TRAF6 without dissembling the chains themselves. Our studies suggest that A20 does not act as a general DUB but has the specificity for particular polyubiquitinated substrates to assure its fidelity in regulating NF-κB activation in the tumor necrosis factor, interleukin-1, and Toll-like receptor pathways.  相似文献   

11.
Integrin alpha(5)beta(1), a major fibronectin receptor, functions in a wide variety of biological phenomena. We have found that alpha 2-8-linked oligosialic acids with 5 < or = degree of polymerization (DP) < or = 7 occur on integrin alpha(5) subunit of the human melanoma cell line G361. The integrin alpha(5) subunit immunoprecipitated with anti-integrin alpha(5) antibody reacted with the monoclonal antibody 12E3, which recognizes oligo/polysialic acid with DP > or = 5 but not with the polyclonal antibody H.46 recognizing oligo/polysialic acid with DP > or = 8. The occurrence of oligosialic acids was further demonstrated by fluorometric C(7)/C(9) analysis on the immunopurified integrin alpha(5) subunit. Oligosialic acids were also found in the alpha(5) subunit of several other human cells such as foreskin fibroblast and chronic erythroleukemia K562 cells. These results suggest the ubiquitous modification with unique oligosialic acids occurs on the alpha(5) subunit of integrin alpha(5)beta(1). The adhesion of human melanoma G361 cells to fibronectin was mainly mediated by integrin alpha(5)beta(1). Treatment of cells with sialidase from Arthrobacter ureafaciens cleaving alpha 2-3-, alpha 2-6-, and alpha 2-8-linked sialic acids inhibited adhesion to fibronectin. On the other hand, N-acetylneuraminidase II, which cleaves alpha 2-3 and alpha 2-6 but not alpha 2-8 linkages, showed no inhibitory activity. After the loss of oligosialic acids, integrin alpha(5)beta(1) failed to bind to fibronectin-conjugated Sepharose, indicating that the oligosialic acid on the alpha(5) subunit of integrin alpha(5)beta(1) plays important roles in cell adhesion to fibronectin.  相似文献   

12.
13.
Disruption of the gatekeeper p53 tumor suppressor is involved in various virus-associated tumorigeneses, with aberrant ubiquitination as the major cause of p53 abnormalities in virus-associated tumors. Of note, wild-type p53 is accumulated in Epstein-Barr virus (EBV)-associated tumors, especially in nasopharyngeal carcinoma (NPC). We have previously identified that p53 is accumulated and phosphorylated by EBV oncoprotein latent membrane protein 1 (LMP1) in NPC. Here, we further found that LMP1 promoted p53 accumulation via two distinct ubiquitin modifications. LMP1 promoted p53 stability and accumulation by suppressing K48-linked ubiquitination of p53 mediated by E3 ligase MDM2, which is associated with its phosphorylation at Ser20, while increasing the levels of total cellular ubiquitinated p53. LMP1 also induced K63-linked ubiquitination of p53 by interacting with tumor necrosis factor receptor-associated factor 2 (TRAF2), thus contributing to p53 accumulation. Furthermore, LMP1 rescued tumor cell apoptosis and cell cycle arrest mediated by K63-linked ubiquitination of p53. Collectively, these results demonstrate aberrant ubiquitin modifications of p53 and its biological functions by viral protein LMP1, which has broad implications to the pathogenesis of multiple EBV-associated tumors.  相似文献   

14.
Dysregulated glucagon secretion is a hallmark of type 2 diabetes (T2D). To date, few effective therapeutic agents target on deranged glucagon secretion. Family with sequence similarity 3 member D (FAM3D) is a novel gut-derived cytokine-like protein, and its secretion timing is contrary to that of glucagon. However, the roles of FAM3D in metabolic disorder and its biological functions are largely unknown. In the present study, we investigated whether FAM3D modulates glucagon production in mouse pancreatic alpha TC1 clone 6 (αTC1-6) cells. Glucagon secretion, prohormone convertase 2 (PC2) activity, and mitogen-activated protein kinase (MAPK) pathway were assessed. Exogenous FAM3D inhibited glucagon secretion, PC2 activity, as well as extracellular-regulated protein kinase 1/2 (ERK1/2) signaling and induced MAPK phosphatase 1 (MKP1) expression. Moreover, knockdown of MKP1 and inhibition of ERK1/2 abolished and potentiated the inhibitory effect of FAM3D on glucagon secretion, respectively. Taken together, FAM3D inhibits glucagon secretion via MKP1-dependent suppression of ERK1/2 signaling. These results provide rationale for developing the therapeutic potential of FAM3D for dysregulated glucagon secretion and T2D.  相似文献   

15.
16.
Transforming growth factor β (TGFβ) can act either as a tumor promoter or a tumor suppressor in a context-dependent manner. High levels of TGFβ are found in prostate cancer tissues and correlate with poor patient prognosis. We recently identified a novel TGFβ-regulated signaling cascade in which TGFβ type I receptor (TβRI) is activated by the E3 ligase TNF-receptor-associated factor 6 (TRAF6) via the Lys63-linked polyubiquitination of TβRI. TRAF6 also contributes to activation of TNF-α-converting enzyme and presenilin-1, resulting in the proteolytic cleavage of TβRI and releasing the intracellular domain of TβRI, which is translocated to the nucleus to promote tumor invasiveness. In this report, we provide evidence that Lys178 of TβRI is polyubiquitinated by TRAF6. Moreover, our data suggest that TRAF6-mediated Lys63-linked ubiquitination of the TβRI intracellular domain is a prerequisite for TGFβ regulation of mRNA for cyclin D1 (CCND1), expression, as well as for the regulation of other genes controlling the cell cycle, differentiation, and invasiveness of prostate cancer cells.  相似文献   

17.
Transforming growth factor β (TGFβ) can act either as a tumor promoter or a tumor suppressor in a context-dependent manner. High levels of TGFβ are found in prostate cancer tissues and correlate with poor patient prognosis. We recently identified a novel TGFβ-regulated signaling cascade in which TGFβ type I receptor (TβRI) is activated by the E3 ligase TNF-receptor-associated factor 6 (TRAF6) via the Lys63-linked polyubiquitination of TβRI. TRAF6 also contributes to activation of TNF-α-converting enzyme and presenilin-1, resulting in the proteolytic cleavage of TβRI and releasing the intracellular domain of TβRI, which is translocated to the nucleus to promote tumor invasiveness. In this report, we provide evidence that Lys178 of TβRI is polyubiquitinated by TRAF6. Moreover, our data suggest that TRAF6-mediated Lys63-linked ubiquitination of the TβRI intracellular domain is a prerequisite for TGFβ regulation of mRNA for cyclin D1 (CCND1), expression, as well as for the regulation of other genes controlling the cell cycle, differentiation, and invasiveness of prostate cancer cells.  相似文献   

18.
Hedgehog (Hh) signaling plays a critical role in embryogenesis and tissue homeostasis, and its deregulation has been associated with tumor growth. The tumor suppressor SuFu inhibits Hh signaling by preventing the nuclear translocation of Gli and suppressing cell proliferation. Regulation of SuFu activity and stability is key to controlling Hh signaling. Here, we unveil SuFu Negating Protein 1 (SNEP1) as a novel Hh target, that enhances the ubiquitination and proteasomal degradation of SuFu and thus promotes Hh signaling. We further show that the E3 ubiquitin ligase LNX1 plays a critical role in the SNEP1-mediated degradation of SuFu. Accordingly, SNEP1 promotes colorectal cancer (CRC) cell proliferation and tumor growth. High levels of SNEP1 are detected in CRC tissues and are well correlated with poor prognosis in CRC patients. Moreover, SNEP1 overexpression reduces sensitivity to anti-Hh inhibitor in CRC cells. Altogether, our findings demonstrate that SNEP1 acts as a novel feedback regulator of Hh signaling by destabilizing SuFu and promoting tumor growth and anti-Hh resistance.Subject terms: Oncogenes, Growth factor signalling  相似文献   

19.
Protease-activated receptor-1 (PAR1) contains five N-linked glycosylation consensus sites as follows: three residing in the N terminus and two localized on the surface of the second extracellular loop (ECL2). To study the effect of N-linked glycosylation in the regulation of PAR1 signaling and trafficking, we generated mutants in which the critical asparagines of the consensus sites were mutated. Here, we report that both the PAR1 N terminus and ECL2 serve as sites for N-linked glycosylation but have different functions in the regulation of receptor signaling and trafficking. N-Linked glycosylation of the PAR1 N terminus is important for transport to the cell surface, whereas the PAR1 mutant lacking glycosylation at ECL2 (NA ECL2) trafficked to the cell surface like the wild-type receptor. However, activated PAR1 NA ECL2 mutant internalization was impaired compared with wild-type receptor, whereas constitutive internalization of unactivated receptor remained intact. Remarkably, thrombin-activated PAR1 NA ECL2 mutant displayed an enhanced maximal signaling response compared with wild-type receptor. The increased PAR1 NA ECL2 mutant signaling was not due to defects in the ability of thrombin to cleave the receptor or signal termination mechanisms. Rather, the PAR1 NA ECL2 mutant displayed a greater efficacy in thrombin-stimulated G protein signaling. Thus, N-linked glycosylation of the PAR1 extracellular surface likely influences ligand docking interactions and the stability of the active receptor conformation. Together, these studies strongly suggest that N-linked glycosylation of PAR1 at the N terminus versus the surface of ECL2 serves distinct functions critical for proper regulation of receptor trafficking and the fidelity of thrombin signaling.  相似文献   

20.
BackgroundsOvarian cancer (OC) is the second most common gynecological tumor with the highest mortality rate worldwide. High FAM111B expression has been reported as a predictor of poor prognosis in other cancers, but its correlation with OC has not been reported.MethodsImmunohistochemistry of tissue microarrays was performed to detect FAM111B expression levels in 141 OC patient tissues. The prognostic value of FAM111B was determined by Kaplan–Meier survival analysis, and correlations between FAM111B expression and clinicopathologic features were investigated by the Clu-square test. The significance of FAM111B expression was verified bioinformatically using the Gene Expression Omnibus database. Protein-protein interaction were performed to explore downstream mechanisms of FAM111B in OC.ResultsAmong 141 OC patients, FAM111B was positively expressed in 87.23%, 58.16%, and 87.94%; and highly expressed in 8.51%, 17.02%, and 19.86%, as evaluated by cytoplasmic, nuclear, and combined cytoplasmic/nuclear staining. FAM111B expression was positively correlated with the expression of tumor protein markers KI67, EGFR, and PDL-1. Patients with high FAM111B expression had aggressive clinicopathologic features and shorter overall survival (P value 0.0428, 0.0050, 0.0029) and progression-free survival (P value 0.0251, 0.012, 0.0596) compared to the low FAM111B expression group for cytoplasmic, nuclear, and combined cytoplasmic/nuclear groups, respectively. These results were verified using patient data from the Gene Expression Omnibus. Seventeen genes co-expressed with FAM111B were primarily involved in “negative regulation of histone modification”, “hippo signaling” and “inner ear receptor cell differentiation”.ConclusionsHigh FAM111B expression may serve as a novel prognostic predictor and molecular therapeutic target for OC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号