首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pyrethroid resistance is envisioned to be a major problem for the vector control program since, at present, there are no suitable chemical substitutes for pyrethroids. Cross-resistance to knockdown agents, which are mainly used in mosquito coils and related products as spatial repellents, is the most serious concern. Since cross-resistance is a global phenomenon, we have started to monitor the distribution of mosquito resistance to pyrethroids. The first pilot study was carried out in Vietnam. We periodically drove along the national road from the north end to the Mekong Delta in Vietnam and collected mosquito larvae from used tires. Simplified susceptibility tests were performed using the fourth instar larvae of Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus. Compared with the other species, Ae. aegypti demonstrated the most prominent reduction in susceptibility. For Ae. aegypti, significant increases in the susceptibility indices with a decrease in the latitude of collection points were observed, indicating that the susceptibility of Ae. aegypti against d-allethrin was lower in the southern part, including mountainous areas, as compared to that in the northern part of Vietnam. There was a significant correlation between the susceptibility indices in Ae. aegypti and the sum of annual pyrethroid use for malaria control (1998–2002). This might explain that the use of pyrethroids as residual treatment inside houses and pyrethroid-impregnated bed nets for malaria control is attributable to low pyrethroid susceptibility in Ae. aegypti. Such insecticide treatment appeared to have been intensively administered in the interior and along the periphery of human habitation areas where, incidentally, the breeding and resting sites of Ae. aegypti are located. This might account for the strong selection pressure toward Ae. aegypti and not Ae. albopictus.  相似文献   

2.
Biosynthesis of metal nanoparticles using microorganisms is an important area of research in nanobiotechnology, which is an emerging eco-friendly science of well-defined sizes, shapes and controlled monodispersity. The present study proposed a green process for the extracellular production of silver (Ag) and gold (Au) nanoparticles (NPs) using the soil fungi Chrysosporium keratinophilum and Verticillium lecanii. The synthesized NPs were formed fairly uniform with spherical shape determined by Transmission Electron Microscope (TEM) and confirmed by Scanning Electron Microscope (SEM). Elemental analysis on single particle was carried by EDX analysis. The results were further supported by UV-vis spectrophotometry. In addition, we have also investigated the effect of synthesized AgNPs and AuNPs against the larvae and pupae of Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti. The efficacy test was performed at different concentrations for periods of different lengths by the probit analysis. The larvae and pupae of Cx. quinquefasciatus, An. stephensi and Ae. aegypti were found highly susceptible to the synthesized AgNPs than the AuNPs. The larvae of Cx. quinquefasciatus and Ae. aegypti were found to be more susceptible to the AgNPs and AuNPs synthesized using the C. keratinophilum and V. lecanii compared with the larvae of An. stephensi. The pupae of Ae. aegypti have shown higher mortality against the synthesized AgNPs than the pupa of Cx. quinquefasciatus, while no adverse effects could be observed in the pupa of An. stephensi. By this approach, it is suggested that this rapid synthesis of nanoparticles would be useful for developing a biological process for mosquito control.  相似文献   

3.
Interspecies interactions have important impacts on communities and when multiple trophic levels are involved, effects can be complex and indirect. For mosquitoes, interactions experienced as larvae affect adult attributes such as survivorship, reproductive output, and longevity, factors that can affect their ability to vector disease. We examined how larvae of two ecologically distinct mosquito species, Aedes japonicus japonicus and Culex quinquefasciatus, interact at different temperatures (17 and 27 °C) and at different relative densities. We also quantified abundances of bacteria and protozoan flagellates to uncover how changes in the microbial community affect the outcome of the two mosquitoes’ interaction. At 17 °C, survival and size of both mosquito species were not affected by the other’s presence. Cx. quinquefasciatus was strongly affected by intraspecific, but not interspecific, competition at both temperatures. At 27 °C, Ae. j. japonicus larvae experienced 100 % mortality in treatments by themselves and treatments where Cx. quinquefasciatus was abundant, surviving only in the presence of low densities of Cx. quinquefasciatus. Both the total bacteria count and counts of a protozoan flagellate identified as Spumella spp. decreased with increasing numbers of Cx. quinquefasciatus. We postulate that at 27 °C, the survival of Ae. j. japonicus depends on the interaction between Cx. quinquefasciatus and the microbial community. This study demonstrates that one mosquito species may alter the microbial community in ways that indirectly influence another mosquito species’ larval survival, and by extension adult abundance and potential disease transmission.  相似文献   

4.
5.

Background

Although they are important disease vectors mosquito biodiversity in Pakistan is poorly known. Recent epidemics of dengue fever have revealed the need for more detailed understanding of the diversity and distributions of mosquito species in this region. DNA barcoding improves the accuracy of mosquito inventories because morphological differences between many species are subtle, leading to misidentifications.

Methodology/Principal Findings

Sequence variation in the barcode region of the mitochondrial COI gene was used to identify mosquito species, reveal genetic diversity, and map the distribution of the dengue-vector species in Pakistan. Analysis of 1684 mosquitoes from 491 sites in Punjab and Khyber Pakhtunkhwa during 2010–2013 revealed 32 species with the assemblage dominated by Culex quinquefasciatus (61% of the collection). The genus Aedes (Stegomyia) comprised 15% of the specimens, and was represented by six taxa with the two dengue vector species, Ae. albopictus and Ae. aegypti, dominant and broadly distributed. Anopheles made up another 6% of the catch with An. subpictus dominating. Barcode sequence divergence in conspecific specimens ranged from 0–2.4%, while congeneric species showed from 2.3–17.8% divergence. A global haplotype analysis of disease-vectors showed the presence of multiple haplotypes, although a single haplotype of each dengue-vector species was dominant in most countries. Geographic distribution of Ae. aegypti and Ae. albopictus showed the later species was dominant and found in both rural and urban environments.

Conclusions

As the first DNA-based analysis of mosquitoes in Pakistan, this study has begun the construction of a barcode reference library for the mosquitoes of this region. Levels of genetic diversity varied among species. Because of its capacity to differentiate species, even those with subtle morphological differences, DNA barcoding aids accurate tracking of vector populations.  相似文献   

6.
The impact of the presence of larval mosquito pathogens with potential for biological control on oviposition choice was evaluated for three mosquito species/pathogen pairs present in Florida. These included Aedes aegypti infected with Edhazardia aedis, Aedes albopictus infected with Vavraia culicis, and Culex quinquefasciatus infected with Culex nigripalpus nucleopolyhedrovirus (CuniNPV). Two‐choice oviposition bioassays were performed on each host and pathogen species with one oviposition cup containing infected larvae and the other cup containing uninfected larvae (control). Both uninfected and E. aedis‐infected female Ae. aegypti laid significantly fewer eggs in oviposition cups containing infected larvae. Uninfected gravid female Ae. albopictus and Cx. quinquefasciatus oviposited equally in cups containing uninfected larvae or containing larvae infected with V. culicis or CuniNPV, respectively. Gravid female Ae. albopictus infected with V. culicis did not display ovarian development and did not lay eggs. The decreased oviposition by gravid Ae. aegypti in containers containing E. aedis‐infected larvae may indicate that the infected larvae produce chemicals deterring oviposition.  相似文献   

7.
Genetic variation in the mosquito Anopheles gambiae profoundly influences its ability to transmit malaria. Mosquito gut bacteria are shown to influence the outcome of infections with Plasmodium parasites and are also thought to exert a strong drive on genetic variation through natural selection; however, a link between antibacterial effects and genetic variation is yet to emerge. Here, we combined SNP genotyping and expression profiling with phenotypic analyses of candidate genes by RNAi-mediated silencing and 454 pyrosequencing to investigate this intricate biological system. We identified 138 An. gambiae genes to be genetically associated with the outcome of Serratia marcescens infection, including the peptidoglycan recognition receptor PGRPLC that triggers activation of the antibacterial IMD/REL2 pathway and the epidermal growth factor receptor EGFR. Silencing of three genes encoding type III fibronectin domain proteins (FN3Ds) increased the Serratia load and altered the gut microbiota composition in favor of Enterobacteriaceae. These data suggest that natural genetic variation in immune-related genes can shape the bacterial population structure of the mosquito gut with high specificity. Importantly, FN3D2 encodes a homolog of the hypervariable pattern recognition receptor Dscam, suggesting that pathogen-specific recognition may involve a broader family of immune factors. Additionally, we showed that silencing the gene encoding the gustatory receptor Gr9 that is also associated with the Serratia infection phenotype drastically increased Serratia levels. The Gr9 antibacterial activity appears to be related to mosquito feeding behavior and to mostly rely on changes of neuropeptide F expression, together suggesting a behavioral immune response following Serratia infection. Our findings reveal that the mosquito response to oral Serratia infection comprises both an epithelial and a behavioral immune component.  相似文献   

8.

Background

Female Aedes aegypti mosquitoes are the principal vector for dengue fever, causing 50–100 million infections per year, transmitted between human and mosquito by blood feeding. Ae. aegypti host-seeking behavior is known to be inhibited for three days following a blood meal by a hemolymph-borne humoral factor. Head Peptide-I is a candidate peptide mediating this suppression, but the mechanism by which this peptide alters mosquito behavior and the receptor through which it signals are unknown.

Methodology/Principal Findings

Head Peptide-I shows sequence similarity to short Neuropeptide-F peptides (sNPFs) that have been implicated in feeding behaviors and are known to signal through Neuropeptide Y (NPY)-Like Receptors (NPYLRs). We identified eight NPYLRs in the Ae. aegypti genome and screened each in a cell-based calcium imaging assay for sensitivity against a panel of peptides. Four of the Ae. aegypti NPYLRs responded to one or more peptide ligands, but only NYPLR1 responded to Head Peptide-I as well as sNPFs. Two NPYLR1 homologues identified in the genome of the Lyme disease vector, Ixodes scapularis, were also sensitive to Head Peptide-I. Injection of synthetic Head Peptide-I and sNPF-3 inhibited host-seeking behavior in non-blood-fed female mosquitoes, whereas control injections of buffer or inactive Head Peptide-I [Cys10] had no effect. To ask if NPYLR1 is necessary for blood-feeding-induced host-seeking inhibition, we used zinc-finger nucleases to generate five independent npylr1 null mutant strains and tested them for behavioral abnormalities. npylr1 mutants displayed normal behavior in locomotion, egg laying, sugar feeding, blood feeding, host seeking, and inhibition of host seeking after a blood meal.

Conclusions

In this work we deorphanized four Ae. aegypti NPYLRs and identified NPYLR1 as a candidate sNPF receptor that is also sensitive to Head Peptide-I. Yet npylr1 alone is not required for host-seeking inhibition and we conclude that other receptors, additional peptides, or both, regulate this important behavior.  相似文献   

9.
《Bioresource technology》2000,71(3):267-271
Oil of Mentha piperita L. (Peppermint oil), a widely used essential oil, was evaluated for larvicidal activity against different mosquito species: Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus by exposing IIIrd instar larvae of mosquitoes in enamel trays 6 × 4 inch2 size filled to a depth of 3 inch with water. Of the three species tested Cx. quinquefasciatus was most susceptible followed by Ae. aegypti and An. stephensi. Application of oil at 3 ml/m2 of water surface area resulted in 100% mortality within 24 h for Cx. quinquefasciatus, 90% for Ae. aegypti and 85% for An. stephensi. For Ae. aegypti 100% mortality was achieved at 3 ml/m2 in 48 h or 4 ml/m2 in 24 h. For An. stephensi 100% mortality was observed at 4 ml/m2 in 72 h. The emergence at 3 ml/m2 was also inhibited to a great extent and the few adults which emerged did not ovipost even after taking a blood meal. The oil showed strong repellent action against adult mosquitoes when applied on human skin. Percent protection obtained against An. annularis, An. culicifacies, and Cx. quinquefasciatus was 100%, 92.3% and 84.5%, respectively. The repellent action of Mentha oil was comparable to that of Mylol oil consisting of dibutyl and dimethyl phthalates.  相似文献   

10.
11.
BackgroundAedes aegypti mosquito-borne viruses including Zika (ZIKV), dengue (DENV), yellow fever (YFV), and chikungunya (CHIKV) have emerged and re-emerged globally, resulting in an elevated burden of human disease. Aedes aegypti is found worldwide in tropical, sub-tropical, and temperate areas. The characterization of mosquito blood meals is essential to understand the transmission dynamics of mosquito-vectored pathogens.Methodology/principal findingsHere, we report Ae. aegypti and Culex quinquefasciatus host feeding patterns and arbovirus transmission in Northern Mexico using a metabarcoding-like approach with next-generation deep sequencing technology. A total of 145 Ae. aegypti yielded a blood meal analysis result with 107 (73.8%) for a single vertebrate species and 38 (26.2%) for two or more. Among the single host blood meals for Ae. aegypti, 28.0% were from humans, 54.2% from dogs, 16.8% from cats, and 1.0% from tortoises. Among those with more than one species present, 65.9% were from humans and dogs. For Cx. quinquefasciatus, 388 individuals yielded information with 326 (84%) being from a single host and 63 (16.2%) being from two or more hosts. Of the single species blood meals, 77.9% were from dogs, 6.1% from chickens, 3.1% from house sparrows, 2.4% from humans, while the remaining 10.5% derived from other 12 host species. Among those which had fed on more than one species, 11% were from dogs and humans, and 89% of other host species combinations. Forage ratio analysis revealed dog as the most over-utilized host by Ae. aegypti (= 4.3) and Cx. quinquefasciatus (= 5.6) and the human blood index at 39% and 4%, respectively. A total of 2,941 host-seeking female Ae. aegypti and 3,536 Cx. quinquefasciatus mosquitoes were collected in the surveyed area. Of these, 118 Ae. aegypti pools and 37 Cx. quinquefasciatus pools were screened for seven arboviruses (ZIKV, DENV 1–4, CHIKV, and West Nile virus (WNV)) using qRT-PCR and none were positive (point prevalence = 0%). The 95%-exact upper limit confidence interval was 0.07% and 0.17% for Ae. aegypti and Cx. quinquefasciatus, respectivelyConclusions/significanceThe low human blood feeding rate in Ae. aegypti, high rate of feeding on mammals by Cx. quinquefasciatus, and the potential risk to transmission dynamics of arboviruses in highly urbanized areas of Northern Mexico is discussed.  相似文献   

12.
In East Africa, significant morbidity and mortality are caused by infections spread by Culex quinquefasciatus and Aedes aegypti. Sticky traps have been shown to be effective tools for sampling populations of Aedes mosquitoes and have been found to catch Cx. quinquefasciatus. Thus, they could potentially be used to sample populations of this species. This study compared Sticky ovitraps (SO) and MosquiTraps (MQT) with the CDC Gravid trap (CDC‐GT) for collection of Culex and Aedes mosquito populations in Tanzania. A follow‐up experiment was carried out using traps set for a 24‐h period to accommodate the oviposition habits of Aedes aegypti and Ae. simpsoni s.l. mosquitoes. The results showed that the CDC‐GT caught significantly more Cx. quinquefasciatus and Ae. aegypti than the SO or MQT, but there was no significant difference in the number of mosquitoes caught between the two sticky traps or of Ae. simpsoni s.l. caught among the three trap types. The results suggest that CDC‐GTs are the most appropriate in sampling of Cx. quinquefasciatus. Although CDC‐GTs collected more Ae. aegypti than the sticky traps, the simplicity and cost benefit of sticky traps facilitates large scale studies. All three trap types should be considered for monitoring Aedes mosquitoes.  相似文献   

13.
Three mosquito coil formulations, each containing either metofluthrin 0.025% w/w, d-allethrin 0.225% w/w, or esbiothrin 0.10% w/w were evaluated for knockdown and killing properties against laboratory populations of female Aedes aegypti (L.) and Culex quinquefasciatus Say under different nutritional-energy sources of blood, sucrose, and water. The tests were conducted in a 70 cm × 70 cm × 70 cm glass chamber. Mosquito responses were measured by knockdown times during the 20-min exposure period and mortality at 24 h post-exposure. The results showed the metofluthrin coil provided the most rapid knockdown for both test species and regardless of nutritional condition compared with the other two coils. Metofluthrin and d-allethrin were highly effective in killing Ae. aegypti (95–100% mortality), whereas esbiothrin produced 100% mortality to water-fed mosquitoes and 78.3 and 80% mortality for blood- and sucrose-fed specimens, respectively. >85% mortality was observed in sucrose- and water-fed Cx. quinquefasciatus against metofluthrin, while 78.3% blood-fed females survived exposure. This species showed very low mortality with d-allethrin (3.3% to 28.3%), with the highest mortality recorded (71.7%) for water-fed with esbiothrin. Overall, Ae. aegypti was more sensitive to all three coil products than Cx. quinquefasciatus. The mortality between species and nutritional conditions showed significant differences for all comparisons except for sucrose-fed mosquitoes exposed to metofluthrin.  相似文献   

14.
Adaptations to anthropogenic domestic habitats contribute to the success of the mosquito Aedes aegypti as a major global vector of several arboviral diseases. The species inhabited African forests before expanding into domestic habitats and spreading to other continents. Despite a well‐studied evolutionary history, how this species initially moved into human settlements in Africa remains unclear. During this initial habitat transition, African Ae. aegypti switched their larval sites from natural water containers like tree holes to artificial containers like clay pots. Little is known about how these natural versus artificial containers differ in their characteristics. Filling this knowledge gap could provide valuable information for studying the evolution of Ae. aegypti associated with larval habitat changes. As an initial effort, in this study, we characterized the microenvironments of Ae. aegypti larval sites in forest and domestic habitats in two African localities: La Lopé, Gabon, and Rabai, Kenya. Specifically, we measured the physical characteristics, microbial density, bacterial composition, and volatile chemical profiles of multiple larval sites. In both localities, comparisons between natural containers in the forests and artificial containers in the villages revealed significantly different microenvironments. We next examined whether the between‐habitat differences in larval site microenvironments lead to differences in oviposition, a key behavior affecting larval distribution. Forest Ae. aegypti readily accepted the artificial containers we placed in the forests. Laboratory choice experiments also did not find distinct oviposition preferences between forest and village Ae. aegypti colonies. These results suggested that African Ae. aegypti are likely generalists in their larval site choices. This flexibility to accept various containers with a wide range of physical, microbial, and chemical conditions might allow Ae. aegypti to use human‐stored water as fallback larval sites during dry seasons, which is hypothesized to have initiated the domestic evolution of Ae. aegypti.  相似文献   

15.
16.
Male mosquitoes transfer seminal fluid proteins (hereafter ‘SFPs’) during mating. These proteins can have profound effects on female behavior in the yellow fever mosquito Aedes aegypti and the Asian tiger mosquito Aedes albopictus. SFPs are thought to be responsible for female refractoriness to mating in both species. However, only limited information is available about the duration of induced refractoriness or the quantity of SFPs required to be effective in Ae. albopictus. Here, we tested the duration of the effect of SFPs on female refractory behavior for both Aedes species. Additionally, we determined the lowest SFP dose required to induce female refractory behavior in Ae. aegypti. Virgin females were injected intra-thoracically with doses ranging from 0.25 to 0.008 equivalents of one male’s SFP amount. Our results demonstrate high sensitivity of female Ae. aegypti and Ae. albopictus to SFPs of their own species, with the majority of females becoming refractory at doses ? 0.031 male-equivalents after injection into the hemocoel. This effect was long-lasting in both species; none of the injected females were inseminated when presented with males of their own species 30 to 34 days post-injection, whereas most saline-injected control females mated at this time point. These results will aid future work to characterize individual SFPs involved in post-mating refractoriness in these two species. Moreover, they show that as is the situation in the mosquito Anopheles gambiae, and unlike Drosophila melanogaster, sperm are not required for the maintenance of a sexual refractoriness response in Ae. aegypti and Ae. albopictus.  相似文献   

17.

Background

Aedes aegypti is the main vector of dengue, a disease that is increasing its geographical range as well as incidence rates. Despite its public health importance, the effect of dengue virus (DENV) on some mosquito traits remains unknown. Here, we investigated the impact of DENV-2 infection on the feeding behavior, survival, oviposition success and fecundity of Ae. aegypti females.

Methods/Principal Findings

After orally-challenging Ae. aegypti females with a DENV-2 strain using a membrane feeder, we monitored the feeding behavior, survival, oviposition success and fecundity throughout the mosquito lifespan. We observed an age-dependent cost of DENV infection on mosquito feeding behavior and fecundity. Infected individuals took more time to ingest blood from anesthetized mice in the 2nd and 3rd weeks post-infection, and also longer overall blood-feeding times in the 3rd week post-infection, when females were around 20 days old. Often, infected Ae. aegypti females did not lay eggs and when they were laid, smaller number of eggs were laid compared to uninfected controls. A reduction in the number of eggs laid per female was evident starting on the 3rd week post-infection. DENV-2 negatively affected mosquito lifespan, since overall the longevity of infected females was halved compared to that of the uninfected control group.

Conclusions

The DENV-2 strain tested significantly affected Ae. aegypti traits directly correlated with vectorial capacity or mosquito population density, such as feeding behavior, survival, fecundity and oviposition success. Infected mosquitoes spent more time ingesting blood, had reduced lifespan, laid eggs less frequently, and when they did lay eggs, the clutches were smaller than uninfected mosquitoes.  相似文献   

18.
Mosquitoes rely on their gut microbiota for development   总被引:1,自引:0,他引:1  
Field studies indicate adult mosquitoes (Culicidae) host low diversity communities of bacteria that vary greatly among individuals and species. In contrast, it remains unclear how adult mosquitoes acquire their microbiome, what influences community structure, and whether the microbiome is important for survival. Here, we used pyrosequencing of 16S rRNA to characterize the bacterial communities of three mosquito species reared under identical conditions. Two of these species, Aedes aegypti and Anopheles gambiae, are anautogenous and must blood‐feed to produce eggs, while one, Georgecraigius atropalpus, is autogenous and produces eggs without blood feeding. Each mosquito species contained a low diversity community comprised primarily of aerobic bacteria acquired from the aquatic habitat in which larvae developed. Our results suggested that the communities in Ae. aegypti and An. gambiae larvae share more similarities with one another than with G. atropalpus. Studies with Ae. aegypti also strongly suggested that adults transstadially acquired several members of the larval bacterial community, but only four genera of bacteria present in blood fed females were detected on eggs. Functional assays showed that axenic larvae of each species failed to develop beyond the first instar. Experiments with Ae. aegypti indicated several members of the microbial community and Escherichia coli successfully colonized axenic larvae and rescued development. Overall, our results provide new insights about the acquisition and structure of bacterial communities in mosquitoes. They also indicate that three mosquito species spanning the breadth of the Culicidae depend on their gut microbiome for development.  相似文献   

19.
Three species of mosquito larvae, representing three genera, were exposed from 10 min to 2 hr to the pathogen Bacillus sphaericus. Culex quinquefasciatus rapidly ingested the bacterium with resulting high mortality. Anopheles albimanus ingested it at a much lower rate initially with correspondingly low mortality. At the longest time interval they had accumulated approximately the same number of bacterial cells as C. quinquefasciatus but achieved a lower mortality. Aedes aegypti ingested and accumulated bacterium at the same rate as C. quinquefasciatus but was resistant to all time intervals. Utilizing 14C-labeled bacteria, we demonstrated that these differences were attributable to larval behavior in the case of A. albimanus but not in the case of A. aegypti.  相似文献   

20.

Background

Zika virus (ZIKV) is a little known flavivirus that caused a major outbreak in 2007, in the South-western Pacific Island of Yap. It causes dengue-like syndromes but with milder symptoms. In Africa, where it was first isolated, ZIKV is mainly transmitted by sylvatic Aedes mosquitoes. The virus has also been isolated from Ae. aegypti and it is considered to be the vector involved in the urban transmission of the virus. Transmission of the virus by an African strain of Ae. aegypti has also been demonstrated under laboratory conditions. The aim of the present study is to describe the oral susceptibility of a Singapore strain of Ae. aegypti to ZIKV, under conditions that simulate local climate.

Methodology/Principal Findings

To assess the receptivity of Singapore''s Ae. aegypti to the virus, we orally exposed a local mosquito strain to a Ugandan strain of ZIKV. Upon exposure, fully engorged mosquitoes were maintained in an environmental chamber set at 29°C and 70–75% RH. Eight mosquitoes were then sampled daily from day 1 to day 7, and subsequently on days 10 and 14 post exposure (pe). The virus titer of the midgut and salivary glands of each mosquito were determined using a tissue culture infectious dose50 (TCID50) assay. High midgut infection and salivary gland dissemination rates were observed. By day 5 after the infectious blood meal, ZIKV was found in the salivary glands of more than half of the mosquitoes tested (62%); and by day 10, all mosquitoes were potentially infective.

Conclusions/Significance

This study showed that Singapore''s urban Ae. aegypti are susceptible and are potentially capable of transmitting ZIKV. The virus could be established in Singapore should it be introduced. Nevertheless, Singapore''s current dengue control strategy is applicable to control ZIKV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号