首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative stress can induce premature cellular senescence. Senescent cells secrete various growth factors and cytokines, such as IL-6, that can signal to the tumor microenvironment and promote cancer cell growth. Sirtuin 1 (Sirt1) is a class III histone deacetylase that regulates a variety of physiological processes, including senescence. We found that caveolin-1, a structural protein component of caveolar membranes, is a direct binding partner of Sirt1, as shown by the binding of the scaffolding domain of caveolin-1 (amino acids 82–101) to the caveolin-binding domain of Sirt1 (amino acids 310–317). Our data show that oxidative stress promotes the sequestration of Sirt1 into caveolar membranes and the interaction of Sirt1 with caveolin-1, which lead to inhibition of Sirt1 activity. Reactive oxygen species stimulation promotes acetylation of p53 and premature senescence in wild-type but not caveolin-1 null mouse embryonic fibroblasts (MEFs). Either down-regulation of Sirt1 expression or re-expression of caveolin-1 in caveolin-1 null MEFs restores reactive oxygen species-induced acetylation of p53 and premature senescence. In addition, overexpression of caveolin-1 induces stress induced premature senescence in p53 wild-type but not p53 knockout MEFs. Phosphorylation of caveolin-1 on tyrosine 14 promotes the sequestration of Sirt1 into caveolar membranes and activates p53/senescence signaling. We also identified IL-6 as a caveolin-1-specific cytokine that is secreted by senescent fibroblasts following the caveolin-1-mediated inhibition of Sirt1. The caveolin-1-mediated secretion of IL-6 by senescent fibroblasts stimulates the growth of cancer cells. Therefore, by inhibiting Sirt1, caveolin-1 links free radicals to the activation of the p53/senescence pathway and the protumorigenic properties of IL-6.  相似文献   

2.
AMPK activation is beneficial for cellular homeostasis and senescence prevention. However, the molecular events involved in AMPK activation are not well defined. In this study, we addressed the mechanism underlying the protective effect of AMPK on oxidative stress‐induced senescence. The results showed that AMPK was inactivated in senescent cells. However, pharmacological activation of AMPK by metformin and berberine significantly prevented the development of senescence and, accordingly, inhibition of AMPK by Compound C was accelerated. Importantly, AMPK activation prevented hydrogen peroxide‐induced impairment of the autophagic flux in senescent cells, evidenced by the decreased p62 degradation, GFP‐RFP‐LC3 cancellation, and activity of lysosomal hydrolases. We also found that AMPK activation restored the NAD+ levels in the senescent cells via a mechanism involving mostly the salvage pathway for NAD+ synthesis. In addition, the mechanistic relationship of autophagic flux and NAD+ synthesis and the involvement of mTOR and Sirt1 activities were assessed. In summary, our results suggest that AMPK prevents oxidative stress‐induced senescence by improving autophagic flux and NAD+ homeostasis. This study provides a new insight for exploring the mechanisms of aging, autophagy and NAD+ homeostasis, and it is also valuable in the development of innovative strategies to combat aging.  相似文献   

3.
4.
应激诱导的细胞早衰与复制性细胞衰老有相似的细胞表型,但其机制不尽相同.分析二者的衰老相关基因表达特点对了解应激因素诱导细胞衰老的机制有重要意义. 本文对过氧化氢诱导的HeLa细胞早衰过程中的关键衰老相关基因及其转录后调控因子的表达做了分析.结果发现,在复制性衰老过程中明显降低的cyclin A、cyclin B1、c-fos及HuR,在温和过氧化氢诱导的细胞早衰过程中并无明显改变;在氧化应激诱导的细胞早衰过程中,p21与p16表达升高,AUF1则降低,与复制性衰老过程一致;p21 mRNA半衰期在复制性衰老过程中无明显变化,但在氧化应激诱导的细胞早衰过程中则显著延长.上述结果提示,尽管氧化应激诱导的细胞早衰与复制性衰老存在相似基因表达变化,调控机制则不尽相同.  相似文献   

5.
6.
Sirtuin 3 (Sirt3), a mitochondrial deacetylase, regulates mitochondrial redox homeostasis and autophagy and is involved in physiological and pathological processes such as aging, cellular metabolism, and tumorigenesis. We here investigate how Sirt3 regulates doxorubicin (DOX)-induced senescence in lung cancer A549 cells. Sirt3 greatly reduced DOX-induced upregulation of senescence marker proteins p53, p16, p21 and SA-β-Gal activity as well as ROS levels. Notably, Sirt3 reversed DOX-induced autophagic flux blockage, as shown by increased p62 degradation and LC3II/LC3I ratio. Importantly, the autophagy inhibitors 3-methyladenine (3-MA) and chloroquine (CQ) partially abolished the antioxidant stress and antiaging effects of Sirt3, while the autophagy activator rapamycin (Rap) potentiated these effects of Sirt3, demonstrating that autophagy mediates the anti-aging effects of Sirt3. Additionally, Sirt3 inhibited the DOX-induced activation of the phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway, which in turn activated autophagy. The PI3K inhibitor LY294002 promoted the antioxidant stress and antiaging effects of Sirt3, while the AKT activator SC-79 reversed these effects of Sirt3. Taken together, Sirt3 counteracts DOX-induced senescence by improving autophagic flux.  相似文献   

7.
Mitochondrial fragmentation drastically regulates mitochondrial homeostasis in brain illness. However, the role of mitochondrial fragmentation in cerebral ischemia–reperfusion (IR) injury remains unclear. Nur77, a regulator of mitochondrial homeostasis, is associated with heart and liver IR injury, but its effects on mitochondrial function in cerebral IR injury has not been studied intensively. The aim of our study is to explore whether cerebral IR injury is modulated by Nur77 via modification of mitochondrial homeostasis. Our results indicated that Nur77 was upregulated in reperfused brain tissues. Genetic ablation of Nur77 reduced infarction area and promoted neuron survival under IR burden. Biochemical analysis demonstrated that Nur77 deletion protected mitochondrial function, attenuated mitochondrial oxidative stress, preserved mitochondrial potential, and blocked mitochondria-related cell apoptosis. In addition, we illustrated that Nur77 mediated mitochondrial damage via evoking mitochondrial fragmentation that occurred through increased mitochondrial fission and decreased fusion. Besides, our results also demonstrated that Nur77 controlled mitochondrial fragmentation via upregulating INF2 in a manner dependent on the Wnt/β-catenin pathway; inhibition of the Wnt pathway abrogated the protective effect of Nur77 deletion on reperfused-mediated neurons. Altogether, our study highlights that the pathogenesis of cerebral IR injury is associated with Nur77 activation followed by augmented mitochondrial fragmentation via an abnormal Wnt/β-catenin/INF2 pathway. Accordingly, Nur77-dependent mitochondrial fragmentation and the Wnt/β-catenin/INF2 axis may represent novel therapeutic targets to reduce cerebral IR injury.  相似文献   

8.
9.
Our recent studies showed that total body irradiation (TBI) induces long-term bone marrow (BM) suppression in part by induction of hematopoietic stem cell (HSC) senescence through NADPH oxidase 4 (NOX4)-derived reactive oxygen species (ROS). Therefore, in this study we examined whether resveratrol (3,5,4′-trihydroxy-trans-stilbene), a potent antioxidant and a putative activator of Sirtuin 1 (Sirt1), can ameliorate TBI-induced long-term BM injury by inhibiting radiation-induced chronic oxidative stress and senescence in HSCs. Our results showed that pretreatment with resveratrol not only protected mice from TBI-induced acute BM syndrome and lethality but also ameliorated TBI-induced long-term BM injury. The latter effect is probably attributable to resveratrol-mediated reduction of chronic oxidative stress in HSCs, because resveratrol treatment significantly inhibited TBI-induced increase in ROS production in HSCs and prevented mouse BM HSCs from TBI-induced senescence, leading to a significant improvement in HSC clonogenic function and long-term engraftment after transplantation. The inhibition of TBI-induced ROS production in HSCs is probably attributable to resveratrol-mediated downregulation of NOX4 expression and upregulation of Sirt1, superoxide dismutase 2 (SOD2), and glutathione peroxidase 1 expression. Furthermore, we showed that resveratrol increased Sirt1 deacetylase activity in BM hematopoietic cells; and Ex527, a potent Sirt1 inhibitor, can attenuate resveratrol-induced SOD2 expression and the radioprotective effect of resveratrol on HSCs. These findings demonstrate that resveratrol can protect HSCs from radiation at least in part via activation of Sirt1. Therefore, resveratrol has the potential to be used as an effective therapeutic agent to ameliorate TBI-induced long-term BM injury.  相似文献   

10.
Sirtuin 3 (Sirt3), a major mitochondrial NAD+-dependent deacetylase, targets various mitochondrial proteins for lysine deacetylation and regulates important cellular functions such as energy metabolism, aging, and stress response. In this study, we identified the human 8-oxoguanine-DNA glycosylase 1 (OGG1), a DNA repair enzyme that excises 7,8-dihydro-8-oxoguanine (8-oxoG) from damaged genome, as a new target protein for Sirt3. We found that Sirt3 physically associated with OGG1 and deacetylated this DNA glycosylase and that deacetylation by Sirt3 prevented the degradation of the OGG1 protein and controlled its incision activity. We further showed that regulation of the acetylation and turnover of OGG1 by Sirt3 played a critical role in repairing mitochondrial DNA (mtDNA) damage, protecting mitochondrial integrity, and preventing apoptotic cell death under oxidative stress. We observed that following ionizing radiation, human tumor cells with silencing of Sirt3 expression exhibited deteriorated oxidative damage of mtDNA, as measured by the accumulation of 8-oxoG and 4977 common deletion, and showed more severe mitochondrial dysfunction and underwent greater apoptosis in comparison with the cells without silencing of Sirt3 expression. The results reported here not only reveal a new function and mechanism for Sirt3 in defending the mitochondrial genome against oxidative damage and protecting from the genotoxic stress-induced apoptotic cell death but also provide evidence supporting a new mtDNA repair pathway.  相似文献   

11.
Perturbed metabolism of ammonia, an endogenous cytotoxin, causes mitochondrial dysfunction, reduced NAD+/NADH (redox) ratio, and postmitotic senescence. Sirtuins are NAD+-dependent deacetylases that delay senescence. In multiomics analyses, NAD metabolism and sirtuin pathways are enriched during hyperammonemia. Consistently, NAD+-dependent Sirtuin3 (Sirt3) expression and deacetylase activity were decreased, and protein acetylation was increased in human and murine skeletal muscle/myotubes. Global acetylomics and subcellular fractions from myotubes showed hyperammonemia-induced hyperacetylation of cellular signaling and mitochondrial proteins. We dissected the mechanisms and consequences of hyperammonemia-induced NAD metabolism by complementary genetic and chemical approaches. Hyperammonemia inhibited electron transport chain components, specifically complex I that oxidizes NADH to NAD+, that resulted in lower redox ratio. Ammonia also caused mitochondrial oxidative dysfunction, lower mitochondrial NAD+-sensor Sirt3, protein hyperacetylation, and postmitotic senescence. Mitochondrial-targeted Lactobacillus brevis NADH oxidase (MitoLbNOX), but not NAD+ precursor nicotinamide riboside, reversed ammonia-induced oxidative dysfunction, electron transport chain supercomplex disassembly, lower ATP and NAD+ content, protein hyperacetylation, Sirt3 dysfunction and postmitotic senescence in myotubes. Even though Sirt3 overexpression reversed ammonia-induced hyperacetylation, lower redox status or mitochondrial oxidative dysfunction were not reversed. These data show that acetylation is a consequence of, but is not the mechanism of, lower redox status or oxidative dysfunction during hyperammonemia. Targeting NADH oxidation is a potential approach to reverse and potentially prevent ammonia-induced postmitotic senescence in skeletal muscle. Since dysregulated ammonia metabolism occurs with aging, and NAD+ biosynthesis is reduced in sarcopenia, our studies provide a biochemical basis for cellular senescence and have relevance in multiple tissues.  相似文献   

12.
《Free radical research》2013,47(9):1070-1084
Abstract

In addition to serving as the power house of mammalian cells, mitochondria are crucial for the maintenance of cellular homeostasis in response to physiological or environmental changes. Several lines of evidence suggest that posttranslational modification (PTM) of proteins plays a pivotal role in the regulation of the bioenergetic function of mitochondria. Among them, reversible lysine acetylation of mitochondrial proteins has been established as one of the key mechanisms in cellular response to energy demand by modulating the flux of a number of key metabolic pathways. In this article, we focus on the role of Sirt3-mediated deacetylation in: (1) flexibility of energy metabolism, (2) activation of antioxidant defense, and (3) maintenance of cellular redox status in response to dietary challenge and oxidative stress. We suggest that oxidative stress-elicited down-regulation of Sirt3 plays a role in the pathophysiology of diabetes, cardiac hypotrophy, mitochondrial diseases, and age-related diseases. Besides, the physiological role of newly identified lysine acylation mediated by Sirt5 and its biochemical effects on oxidative metabolism are also discussed. Moreover, we have integrated the regulatory function of several protein kinases that are involved in the phosphorylation of mitochondrial enzymes during oxidative stress. Finally, the functional consequence of the synergistic regulation through diverse protein modifications is emphasized on the maintenance of the bioenergetic homeostasis and metabolic adaptation of the animal and human cells. Together, we have provided an updated review of PTM in mitochondrial biology and their implications in aging and human diseases through an intricate regulation of energy metabolism under oxidative stress.  相似文献   

13.
14.
15.
16.
Defects in stress response are main determinants of cellular senescence and organism aging. In fibroblasts from patients affected by Hutchinson–Gilford progeria, a severe LMNA‐linked syndrome associated with bone resorption, cardiovascular disorders, and premature aging, we found altered modulation of CDKN1A, encoding p21, upon oxidative stress induction, and accumulation of senescence markers during stress recovery. In this context, we unraveled a dynamic interaction of lamin A/C with HDAC2, an histone deacetylase that regulates CDKN1A expression. In control skin fibroblasts, lamin A/C is part of a protein complex including HDAC2 and its histone substrates; protein interaction is reduced at the onset of DNA damage response and recovered after completion of DNA repair. This interplay parallels modulation of p21 expression and global histone acetylation, and it is disrupted by LMNAmutations leading to progeroid phenotypes. In fact, HGPS cells show impaired lamin A/C‐HDAC2 interplay and accumulation of p21 upon stress recovery. Collectively, these results link altered physical interaction between lamin A/C and HDAC2 to cellular and organism aging. The lamin A/C‐HDAC2 complex may be a novel therapeutic target to slow down progression of progeria symptoms.  相似文献   

17.
A central objective of evolutionary biology is understanding variation in life‐history trajectories and the rate of aging, or senescence. Senescence can be affected by trade‐offs and behavioural strategies in adults but may also be affected by developmental stress. Developmental stress can accelerate telomere degradation, with long‐term longevity and fitness consequences. Little is known regarding whether variation in developmental stress and telomere dynamics contributes to patterns of senescence during adulthood. We investigated this question in the dimorphic white‐throated sparrow (Zonotrichia albicollis), a species in which adults of the two morphs exhibit established differences in behavioural strategy and patterns of senescence, and also evaluated the relationship between oxidative stress and telomere length. Tan morph females, which exhibit high levels of unassisted parental care, display faster reproductive senescence than white females, and faster actuarial senescence than all of the other morph–sex classes. We hypothesized that high oxidative stress and telomere attrition in tan female nestlings could contribute to this pattern, since tan females are small and potentially at a competitive disadvantage even as nestlings. Nestlings that were smaller than nest mates had higher oxidative stress, and nestlings with high oxidative stress and fast growth rates displayed shorter telomeres. However, we found no consistent morph–sex differences in oxidative stress or telomere length. Results suggest that oxidative stress and fast growth contribute to developmental telomere attrition, with potential ramifications for adults, but that developmental oxidative stress and telomere dynamics do not account for morph–sex differences in senescence during adulthood.  相似文献   

18.
19.
Bmal1 is a core circadian clock gene. Bmal1?/? mice show disruption of the clock and premature aging phenotypes with a short lifespan. However, little is known whether disruption of Bmal1 leads to premature aging at cellular level. Here, we established primary mouse embryonic fibroblast (MEF) cells derived from Bmal1?/? mice and investigated its effects on cellular senescence. Unexpectedly, Bmal1?/? primary MEFs that showed disrupted circadian oscillation underwent neither premature replicative nor stress-induced cellular senescence. Our results therefore uncover that Bmal1 is not required for in vitro cellular senescence, suggesting that circadian clock does not control in vitro cellular senescence.  相似文献   

20.
Several recent investigations have underscored the growing role of melanocortin signaling in the peripheral regulation of lipid, glucose, and energy homeostasis. In addition, the melanocortins play a critical role in the central control of satiety. These observations, and the latest reports highlighting the emerging role of the nuclear hormone receptor (NR) 4A subgroup in metabolism, have prompted us to investigate the cross talk between [Nle(4), d-Phe(7)] (NDP)-α-MSH and Nr4a signaling in adipose. We have shown that NDP-MSH strikingly and preferentially induces the expression of the NR4A subgroup (but not any other members of the NR superfamily) in differentiated 3T3-L1 adipocytes. Utilization of quantitative PCR on custom-designed metabolic TaqMan low-density arrays identified the concomitant and marked induction of the mRNAs encoding Il-6, Cox2, Pdk4, and Pck-1 after NDP-MSH treatment. Similar experiments demonstrated that the mRNA expression profile induced by cAMP and NDP-MSH treatment displayed unique but also overlapping properties and suggested that melanocortin-mediated induction of gene expression involves cAMP-dependent and -independent signaling. Nr4a1/Nur77 small interfering RNA (siRNA) expression suppressed NDP-MSH-mediated induction of Nr4a1/Nur77 and Nr4a3/Nor-1 (but not Nr4a2/Nurr1). Moreover, expression of the siRNA-attenuated NDP-MSH mediated induction of the mRNAs encoding Il-6, Cox2/Ptgs2, and Pck-1 expression. In addition, Nur77 siRNA expression attenuated NDP-MSH-mediated glucose uptake. In vivo, ip administration of NDP-MSH to C57 BL/6J (male) mice significantly induced the expression of the mRNA encoding Nur77 and increased IL-6, Cox2, Pck1, and Pdk4 mRNA expression in (inguinal) adipose tissue. We conclude that Nur77 expression is necessary for MSH-mediated induction of gene expression in differentiated adipocytes. Furthermore, this study demonstrates cross talk between MSH and Nr4a signaling in adipocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号