首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Adult adipose-derived mesenchymal stem cells (AD-MSC) are very interesting to our research group because they are easy to harvest, they are abundant in humans, and they have potential clinical applications in autologous cell therapy for disc degeneration. We examined these cells through sequential serial passages to assess osteogenic and chondrogenic capabilities, mean doubling time and cell senescence. Osteogenic and chondrogenic potencies were maintained through 13 passages. Mean passage doubling time increased significantly with increasing passage number. When donor age was evaluated, passages 1-4 from older donors had significantly longer doubling times compared to cells from younger donors. Passages 5-11 showed similar findings when analyzed by donor age. The mean percent senescence increased significantly with cell passaging, rising from 0% at passage 1 to 3.4% at passage 13. These novel data suggest that caution should be exercised when using AD-MSC with long passage times.  相似文献   

2.
The need for efficient and reliable technologies for clinical‐scale expansion of mesenchymal stromal cells (MSC) has led to the use of disposable bioreactors and culture systems. Here, we evaluate the expansion of cord blood‐derived MSC in a disposable fixed bed culture system. Starting from an initial cell density of 6.0 × 107 cells, after 7 days of culture, it was possible to produce of 4.2(±0.8) × 108 cells, which represents a fold increase of 7.0 (±1.4). After enzymatic retrieval from Fibra‐Cell disks, the cells were able to maintain their potential for differentiation into adipocytes and osteocytes and were positive for many markers common to MSC (CD73, CD90, and CD105). The results obtained in this study demonstrate that MSC can be efficiently expanded in the culture system. This novel approach presents several advantages over the current expansion systems, based on culture flasks or microcarrier‐based spinner flasks and represents a key element for MSC cellular therapy according to GMP compliant clinical‐scale production system. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29: 568–572, 2013  相似文献   

3.
The interaction of mesenchymal stromal cells (MSCs) with paracrine signals and immunological cells, and their responses and regenerative commitment thereafter, is understudied. In the current investigation, we compared MSCs from the umbilical cord blood (UCB), dental pulp (DP), and liposuction material (LS) on their ability to respond to activated neutrophils. Cytokine profiling (interleukin-1α [IL-1α], IL-2, IL-4, IL-6, IL-8, tumor necrosis factor-α [TNF-α], interferon-γ [IFN-γ], transforming growth factor-β [TGF-β]), cellular proliferation and osteogenic differentiation patterns were assessed. The results showed largely comparable cytokine profiles with higher TNF-α and IFN-γ levels in LSMSCs owing to their mature cellular phenotype. The viability and proliferation between LS/DP/UCB MSCs were comparable in the coculture group, while direct activation of MSCs with lipopolysaccharide (LPS) showed comparable proliferation with significant cell death in UCB MSCs and slightly higher cell death in the other two types of MSC. Furthermore, when MSCs post-neutrophil exposure were induced for osteogenic differentiation, though all the MSCs devoid of the sources differentiated, we observed rapid and significant turnover of DPMSCs positive of osteogenic markers rather than LS and UCB MSCs. We further observed a significant turnover of IL-1α and TGF-β at mRNA and cytokine levels, indicating the commitment of MSCs to differentiate through interacting with immunological cells or bacterial products like neutrophils or LPS, respectively. Taken together, these results suggest that MSCs have more or less similar cytokine responses devoid of their anatomical niche. They readily switch over from the cytokine responsive cell phenotype at the immunological microenvironment to differentiate and regenerate tissue in response to cellular signals.  相似文献   

4.
衰老相关新基因CSIG的cDNA克隆和功能   总被引:2,自引:0,他引:2  
为了获得 2BS细胞衰老过程中表达下降的差异基因片段Y6 2的编码序列 ,以cDNA末端快速扩增法获得细胞衰老相关新基因CSIG(cellularsenescenceinhibitedgene ,细胞衰老抑制基因 )的cDNA全长 .CSIGcDNA长 196 1bp ,编码 4 90个氨基酸 ,在多种重要组织中都有不同程度的表达 ;蛋白产物位于细胞核内特定位点 ,可能在核仁中聚集 .细胞转染表明 :CSIG可抑制细胞衰老并延长细胞寿限 ,可能通过核糖体生物合成过程或基因转录调节来调控细胞衰老过程  相似文献   

5.
Background aimsAdipose tissue-derived mesenchymal stromal cells (ASCs) are of interest as a cell therapeutic agent for immunologic and degenerative diseases. During in vitro expansion, ASCs may be at risk for genetic alterations, and genetic screening is a prerequisite. We examined the presence of aneuploidy in ASCs and its origin and development during culture and evaluated the implications of aneuploidy for therapeutic use of ASCs.MethodsAdipose tissue of healthy individuals was used for isolation and expansion of ASCs. Chromosome copy numbers were studied using fluorescence in situ hybridization analysis. Aneuploidy was studied in freshly isolated ASCs, in ASCs cultured for 0–16 passages and in senescent cultures. To evaluate the plasticity of ploidy, ASCs were cloned, and the variation of ploidy in the clones was examined. Tumorigenicity was studied by subcutaneous injection of aneuploid ASCs in immunodeficient NOD/SCID mice.ResultsNo aneuploidy was detected in freshly isolated ASCs. In low passages (passages 0–4), aneuploidy was detected in 3.4% of ASCs. Prolonged culture expansion of ASCs (passages 5–16) resulted in a significant increase of aneuploidy to 7.1%. With senescence, aneuploidy increased further to 19.8%. Aneuploidy was observed in clones of diploid ASCs, demonstrating the de novo development of aneuploidy. No transformation of ASCs was observed, and in contrast to cancer cell lines, aneuploid ASCs were incapable of tumor formation in immunodeficient mice.ConclusionsASC cultures contain a stable percentage of aneuploid cells. Aneuploidy was not a predecessor of transformation or tumor formation. This finding indicates that aneuploidy is culture-induced but unlikely to compromise clinical application of ASCs.  相似文献   

6.
Cells undergo replicative senescence during in vitro expansion, which is induced by the accumulation of cellular damage caused by excessive reactive oxygen species. In this study, we investigated whether long‐term‐cultured human bone marrow mesenchymal stromal cells (MSCs) are insensitive to apoptotic stimulation. To examine this, we established replicative senescent cells from long‐term cultures of human bone marrow MSCs. Senescent cells were identified based on declining population doublings, increased expression of senescence markers p16 and p53 and increased senescence‐associated β‐gal activity. In cell viability assays, replicative senescent MSCs in late passages (i.e. 15–19 passages) resisted damage induced by oxidative stress more than those in early passages did (i.e. 7–10 passages). This resistance occurred via caspase‐9 and caspase‐3 rather than via caspase‐8. The senescent cells are gradually accumulated during long‐term expansion. The oxidative stress‐sensitive proteins ataxia‐telangiectasia mutated and p53 were phosphorylated, and the expression of apoptosis molecules Bax increased, and Bcl‐2 decreased in early passage MSCs; however, the expression of the apoptotic molecules did less change in response to apoptotic stimulation in late‐passage MSCs, suggesting that the intrinsic apoptotic signalling pathway was not induced by oxidative stress in long‐term‐cultured MSCs. Based on these results, we propose that some replicative senescent cells may avoid apoptosis signalling via impairment of signalling molecules and accumulation during long‐term expansion. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
The objective of the present study was to evaluate the effect of porcine Mesenchymal Stem Cells (MSCs) secreted factors on bovine in vitro embryo development by using MSCs in different culture systems: SOF medium, SOF medium conditioned by MSCs in monolayer and in reverse drop and by embryo culture in co-culture with MSCs. Statistically highly significant differences were noted between the number of blastocysts derived cultures in all tested culture systems. The in vitro culture in SOF turned out to be the most optimal. Statistically highly significant differences were observed in the number of blastocyst obtained between SOF and SOF in co-culture with MSCs (p?<?0.0001), and between SOF and SOF conditioned (monolayer and drop) (p?<?0.00001). The trials to produce blastocysts in SOF conditioned by MSCs in reverse drops and monolayer failed. The blastocysts were obtained and analysed by TUNEL only in two out of four experimental groups: SOF and SOF in co-culture with MSCs. There were no significant differences between any of analysed blastocysts’ groups neither in the total number of nuclei nor in the apoptotic features. Neither medium conditioning by MSCs in monolayer and in reverse drop nor embryo culture in co-culture with MSC turned out to be effective.  相似文献   

8.

Background

Clinical trials using ex vivo expansion of autologous mesenchymal stromal cells (MSCs) are in progress for several neurological diseases including multiple sclerosis (MS). Given that environment alters MSC function, we examined whether in vitro expansion, increasing donor age and progressive MS affect the neuroprotective properties of the MSC secretome.

Methods

Comparative analyses of neuronal survival in the presence of MSC-conditioned medium (MSCcm) isolated from control subjects (C-MSCcm) and those with MS (MS-MSCcm) were performed following (1) trophic factor withdrawal and (2) nitric oxide–induced neurotoxicity.

Results

Reduced neuronal survival following trophic factor withdrawal was seen in association with increasing expansion of MSCs in vitro and MSC donor age. Controlling for these factors, there was an independent, negative effect of progressive MS. In nitric oxide neurotoxicity, MSCcm-mediated neuroprotection was reduced when C-MSCcm was isolated from higher-passage MSCs and was negatively associated with increasing MSC passage number and donor age. Furthermore, the neuroprotective effect of MSCcm was lost when MSCs were isolated from patients with MS.

Discussion

Our findings have significant implications for MSC-based therapy in neurodegenerative conditions, particularly for autologous MSC therapy in MS. Impaired neuroprotection mediated by the MSC secretome in progressive MS may reflect reduced reparative potential of autologous MSC-based therapy in MS and it is likely that the causes must be addressed before the full potential of MSC-based therapy is realized. Additionally, we anticipate that understanding the mechanisms responsible will contribute new insights into MS pathogenesis and may also be of wider relevance to other neurodegenerative conditions.  相似文献   

9.
Mesenchymal stem or stromal cells (MSCs) have become of great interest for cell-based therapy owing to their roles in tissue repair and immune suppression. MSCs have the ability to differentiate into specialized tissues, including bone, cartilage and muscle, among several others. Furthermore, it has been found that MSCs can also serve as cellular factories that secrete mediators to stimulate in situ regeneration of injured tissues. Proteomics has contributed significantly to the identification of new proteins to improve cellular characterization of MSCs, to identify new targets for therapeutic intervention and to elucidate important pathways utilized by MSCs to differentiate into distinct tissues. As proteomics technology advances, several studies can be revisited and analyzed in depth, employing state-of-the-art approaches, helping to uncover the cellular mechanisms utilized by MSCs to exert their regenerative functionalities. In this article, we will review the progress made so far and discuss further opportunities for proteomics to contribute to the clinical applications of MSCs.  相似文献   

10.
Multipotent mesenchymal stromal cells (MSC) and MSC-derived products have emerged as promising therapeutic tools. To fully exploit their potential, further mechanistic studies are still necessary and bioprocessing needs to be optimized, which requires an abundant supply of functional MSC for basic research. To address this need, here we used a novel technology to establish a human adipose-derived MSC line with functional characteristics representative of primary MSC. Primary MSC were isolated and subjected to lentiviral transduction with a library of expansion genes. Clonal cell lines were generated and evaluated on the basis of their morphology, immunophenotype, and proliferation potential. One clone (K5 iMSC) was then selected for further characterization. This clone had integrated a specific transgene combination including genes involved in stemness and maintenance of adult stem cells. Favorably, the K5 iMSC showed cell characteristics resembling juvenile MSC, as they displayed a shorter cell length and enhanced migration and proliferation compared with the non-immortalized original primary MSC (p < 0.05). Still, their immunophenotype and differentiation potential corresponded to the original primary MSC and the MSC definition criteria, and cytogenetic analyses revealed no clonal aberrations. We conclude that the technology used is applicable to generate functional MSC lines for basic research and possible future bioprocessing applications.  相似文献   

11.
Neural tube defects (NTDs) are complex congenital malformations resulting from incomplete neurulation in embryo. Despite surgical repair of the defect, most of the patients who survive with NTDs have a multiple system handicap due to neuron deficiency of the defective spinal cord. In this study, we successfully devised a prenatal surgical approach and transplanted mesenchymal stem cells (MSCs) to foetal rat spinal column to treat retinoic acid induced NTDs in rat. Transplanted MSCs survived, grew and expressed markers of neurons, glia and myoblasts in the defective spinal cord. MSCs expressed and perhaps induced the surrounding spinal tissue to express neurotrophic factors. In addition, MSC reduced spinal tissue apoptosis in NTD. Our results suggested that prenatal MSC transplantation could treat spinal neuron deficiency in NTDs by the regeneration of neurons and reduced spinal neuron death in the defective spinal cord.  相似文献   

12.
Bone marrow stroma contains mesenchymal stem cells (MSC) which are progenitor cells, at least for tissues arising from mesechyma. The study of MSC biology yields controversial data. Therefore further experiments are needed to characterize these cells. The aim of our research was to compare primary cultures and subcultures of stromal precursor cells isolated from rat bone marrow. Long-term cultures of these cells isolated from 5 animals have been obtained. Morphological, immunophenotypic, and functional (capacity to osteogenic differentiation) characteristics of the cells have been investigated. We show that the cell morphology in the cultures is highly heterogenic. Morphological cell types are described. Heterogeneity of stromal cells declines on late passages. Cell cultures isolated from different animals have the same immunophenotypic markers (CD90, CD44, CD54, CD106, CD45, CD11b) but different morphological characteristics and a different capacity to osteogenic differentiation during long-term cultivation. The data show that more specific markers and functional tests should be applied to identify MSC.  相似文献   

13.
Cutaneous wounds persist as a health care crisis in spite of increased understanding of the cellular and molecular responses to injury. Contributing significantly to this crisis is the lack of reliable therapies for treatment of wounds that are slow to heal including chronic wounds and deep dermal wounds that develop hypertrophic scars. This article will review the growing evidence demonstrating the promise of multipotent mesenchymal stem/stromal (MSCs) for the treatment of impaired wound healing. MSCs are often referred to as mesenchymal stem cells despite concerns that these cells are not truly stem cells given the lack of evidence demonstrating self-renewal in vivo. Regardless, abundant evidence demonstrates the therapeutic potential of MSCs for repair and regeneration of damaged tissue due to injury or disease. To date, MSC treatment of acute and chronic wounds results in accelerated wound closure with increased epithelialization, granulation tissue formation and angiogenesis. Although there is evidence for MSC differentiation in the wound, most of the therapeutic effects are likely due to MSCs releasing soluble factors that regulate local cellular responses to cutaneous injury. Important challenges need to be overcome before MSCs can be used effectively to treat wounds that are slow to heal.  相似文献   

14.

Background

Mesenchymal stromal cells (MSCs) are studied for their immunotherapeutic potential. Prior to therapeutic use, MSCs are culture expanded to obtain the required cell numbers and, to improve their efficacy, MSCs may be primed in vitro. Culture expansion and priming induce phenotypical and functional changes in MSCs and thus standardisation and quality control measurements come in need. We investigated the impact of priming and culturing on MSC DNA methylation and examined the use of epigenetic profiling as a quality control tool.

Methods

Human umbilical cord–derived MSCs (ucMSCs) were cultured for 3 days with interferon (IFN)γ, transforming growth factor (TGF)β or a multi-factor combination (MC; IFNγ, TGFβ and retinoic acid). In addition, ucMSCs were culture expanded for 14 days. Phenotypical changes and T-cell proliferation inhibition capacity were examined. Genome-wide DNA methylation was measured with Infinium MethylationEPIC Beadchip.

Results

Upon priming, ucMSCs exhibited a different immunophenotype and ucMSC(IFNγ) and ucMSC(MC) had an increased capacity to inhibit T-cell proliferation. DNA methylation patterns were minimally affected by priming, with only one significantly differentially methylated site (DMS) in IFNγ- and MC-primed ucMSCs associated with autophagy activity. In contrast, 14 days after culture expansion, ucMSCs displayed minor phenotypical and functional changes but showed >4000 significantly DMSs, mostly concerning genes involved in membrane composition, cell adhesion and transmembrane signalling.

Discussion

These data show that DNA methylation of MSCs is only marginally affected by priming, whereas culture expansion and subsequent increased cellular interactions have a large impact on methylation. On account of this study, we suggest that DNA methylation analysis is a useful quality control tool for culture expanded therapeutic MSCs.  相似文献   

15.
The brown alga Undaria pinnatifida, which is called Mi-Yoek in Korea, has been traditionally consumed as a health food in East Asian countries. Recent studies have reported that U. pinnatifida has beneficial effects on arteriosclerosis, inflammation, fat metabolism, and tumors. In this study, we examined the anti-senescence effects of ethanol extracts of U. pinnatifida (UP-Ex) in human bone marrow mesenchymal stem cells (hBM-MSCs). UP-Ex protected hBM-MSCs against oxidative injury, as determined by MTT assays. This effect was confirmed by immunoblot analysis of the oxidation-sensitive protein p53 and the apoptotic protein cleaved caspase-3. Excessive intracellular reactive oxygen species (ROS) accumulation induced by oxidative stress was moderated in UP-Ex-treated hBM-MSCs (UP-Ex-MSCs). Similarly, expression of the ROS-scavenging enzymes superoxide dismutase 1 (SOD1), SOD2, and catalase was recovered in UP-Ex-MSCs. Excessive ROS induced by long-term cell expansion (passage 17) was significantly decreased along with restoration of the senescence proteins p53, p21, and p16 in UP-Ex-MSCs. UP-Ex treatment also improved the ability of these replicative, senescent hBM-MSCs (passage 17) to differentiate into osteocytes or adipocytes, suggesting that UP-Ex ameliorates the functional decline of senescent stem cells and may provide better therapeutic efficacy in stem cell therapy.

Abbreviations: hBM-MSCs: human bone marrow mesenchymal stem cells; DCF: 2′,7′-dichlorodihydrofluorescein; DCFH-DA: 2′,7′-dichlorofluorescein diacetate; MTT: 3-(4,5-dimethylthiazol-2-yl-)2,5-diphenyltetrazolium bromide; PBS: phosphate-buffered saline; PFA: paraformaldehyde; RIPA: radioimmunoprecipitation assay; ROS: reactive oxygen species; SOD1: superoxide dismutase 1; SOD2: superoxide dismutase 2.  相似文献   


16.
Human mesenchymal stromal cells (hMSCs) represent an attractive cell source for clinic applications. Besides being multi‐potent, recent clinical trials suggest that they secrete both trophic and immunomodulatory factors, allowing allogenic MSCs to be used in a wider variety of clinical situations. The yield of prospective isolation is however very low, making expansion a required step toward clinical applications. Unfortunately, this leads to a significant decrease in their stemness. To identify the mechanism behind loss of multi‐potency, hMSCs were expanded until replicative senescence and the concomitant molecular changes were characterized at regular intervals. We observed that, with time of culture, loss of multi‐potency was associated with both the accumulation of DNA damage and the respective activation of the DNA damage response pathway, suggesting a correlation between both phenomena. Indeed, exposing hMSCs to DNA damage agents led to a significant decrease in the differentiation potential. We also showed that hMSCs are susceptible to accumulate DNA damage upon in vitro expansion, and that although hMSCs maintained an effective nucleotide excision repair activity, there was a progressive accumulation of DNA damage. We propose a model in which DNA damage accumulation contributes to the loss of differentiation potential of hMSCs, which might not only compromise their potential for clinical applications but also contribute to the characteristics of tissue ageing.  相似文献   

17.
18.
An animal's ability to regrow lost tissues or structures can vary greatly during its life cycle. The annelid Capitella teleta exhibits posterior, but not anterior, regeneration as juveniles and adults. In contrast, embryos display only limited replacement of specific tissues. To investigate when during development individuals of C. teleta become capable of regeneration, we assessed the extent to which larvae can regenerate. We hypothesized that larvae exhibit intermediate regeneration potential and demonstrate some features of juvenile regeneration, but do not successfully replace all lost structures. Both anterior and posterior regeneration potential of larvae were evaluated following amputation. We used several methods to analyze wound sites: EdU incorporation to assess cell proliferation; in situ hybridization to assess stem cell and differentiation marker expression; immunohistochemistry and phalloidin staining to determine presence of neurites and muscle fibers, respectively; and observation to assess re-epithelialization and determine regrowth of structures. Wound healing occurred within 6 h of amputation for both anterior and posterior amputations. Cell proliferation at both wound sites was observed for up to 7 days following amputation. In addition, the stem cell marker vasa was expressed at anterior and posterior wound sites. However, growth of new tissue was observed only in posterior amputations. Neurites from the ventral nerve cord were also observed at posterior wound sites. De novo ash expression in the ectoderm of anterior wound sites indicated neuronal cell specification, although the absence of elav expression indicated an inability to progress to neuronal differentiation. In rare instances, cilia and eyes re-formed. Both amputations induced expanded expression of the myogenesis gene MyoD in preexisting tissues. Our results indicate that amputated larvae complete early, but not late, stages of regeneration, which indicates a gradual acquisition of regenerative ability in C. teleta. Furthermore, amputated larvae can metamorphose into burrowing juveniles, including those missing brain and anterior sensory structures. To our knowledge, this is the first study to assess regenerative potential of annelid larvae.  相似文献   

19.
MSCs (mesenchymal stem cells) are planned foruse in regenerative medicine to offset age-dependent alterations. However, MSCs are affected by replicative senescence associated with decreasing proliferation potential, telomere shortening and DNA damage during in vitro propagation. To monitor in vitro senescence, we have assessed the integrity of DNA by the alkaline comet assay. For optimization of the comet assay we have enhanced the stability of comet slides in liquid and minimized the background noise of the method by improving adhesion of agarose gels on the comet slides and concentrating cells on a defined small area on the slides. The modifications of the slide preparation increase the overall efficiency and reproducibility of the comet assay and minimize the image capture and storage. DNA damage of human MSCs during in vitro cultivation increased with time, as assessed by the comet assay, which therefore offers a fast and easy screening tool in future efforts to minimize replicative senescence of MSCs in vitro.  相似文献   

20.
Osteoblasts are a key component of the endosteal hematopoietic stem cell niche and are recognized with strong hematopoietic supporting activity. Similarly, mesenchymal stromal cells (MSC)‐derived osteoblast (M‐OST) conditioned media (OCM) enhance the growth of hematopoietic progenitors in culture and modulate their engraftment activity. This article aims to characterize the hematopoietic supporting activity of OCM by comparing the secretome of M‐OST to that of their precursor. Over 300 proteins are quantified by mass spectroscopy in media conditioned with MSC or M‐OST, with 47 being differentially expressed. Growth factors, extracellular matrix proteins, and proteins from the complement pathways are included. The functional contribution of selected proteins on the growth and differentiation of cord blood (CB) progenitors is tested. Secreted protein acidic and rich in cysteine and Galectin 3 (Gal3) have little impact on the growth of CB cells in serum‐free medium (SFM). In contrast, inhibition of the complement 3A receptor (C3a‐R) present on CB progenitors significantly reduces the growth of CD34+ cells in OCM cultures but not in SFM. These results provide new insights into changes in factors released by MSC undergoing osteoblast differentiation, and on paracrine factors that are partially responsible for the hematopoietic supporting activity of osteoblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号