首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transglutaminase (TG) enzymes and protein crosslinking have long been implicated in the formation of mineralized tissues. The aim of this study was to analyze the expression, activity and function of TGs in differentiating osteoblasts to gain further insight into the role of extracellular matrix protein crosslinking in bone formation. MC3T3-E1 (subclone 14) pre-osteoblast cultures were treated with ascorbic acid and beta-glycerophosphate to induce cell differentiation and matrix mineralization. Expression of TG isoforms was analyzed by RT-PCR. TG activity was assessed during osteoblast differentiation by in vitro biochemical assays and by in situ labeling of live cell cultures. We demonstrate that MC3T3-E1/C14 osteoblasts express two TG isoforms--TG2 and FXIIIA. Abundant TG activity was observed during cell differentiation which increased significantly after thrombin treatment, a result confirming the presence of FXIIIA in the cultures. Ascorbic acid treatment, which stimulated collagen secretion and assembly, also stimulated externalization of TG activity, likely from FXIIIA which was externalized upon this treatment as analyzed by immunofluoresence microscopy. Inhibition of TG activity in the cultures by cystamine resulted in complete abrogation of mineralization, attributable to decreased matrix accumulation and an arrested state of osteoblast differentiation as measured by decreased levels of bone sialoprotein, osteocalcin and alkaline phosphatase. Additional functional studies and substrate characterization showed that TG activity was required for the formation of a fibronectin-collagen network during the early stages of matrix formation and assembly. This network, in turn, appeared to be essential for further matrix production and progression of the osteoblast differentiation program, and ultimately for mineralization.  相似文献   

2.
The cholesterol-lowering drug, simvastatin, is a pro-drug of a potent 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor and inhibits cholesterol synthesis in humans and animals. In addition, the bone effects of statins including simvastatin are being studied. We assessed the effects of simvastatin on osteoblastic differentiation in nontransformed osteoblastic cells (MC3T3-E1) and rat bone marrow cells. Simvastatin enhanced alkaline phosphatase (ALP) activity and mineralization in a dose- and time-dependent fashion. This stimulatory effect of the statin was observed at relatively low doses (significant at 10(-8) M and maximal at 10(-7) M). Northern blot analysis showed that the statin (10(-7) M) increased in bone morphogenetic protein-2 as well as ALP mRNA concentrations in MC3T3-E1 cells. Simvastatin (10(-7) M) slightly increased in type I collagen mRNA abundance throughout the culture period, whereas it markedly inhibited the gene expression of collagenase-1 between days 14 and 22 of culture. These results indicate that simvastatin has anabolic effects on bone through the promotion of osteoblastic differentiation, suggesting that it could be used for the treatment of common metabolic bone diseases such as osteoporosis.  相似文献   

3.
Induction of osteoblast differentiation indices by statins in MC3T3-E1 cells   总被引:11,自引:0,他引:11  
Statins inhibit 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, which catalyzes conversion of HMG-CoA to mevalonate, a rate-limiting step in cholesterol synthesis. The present study was undertaken to understand the events of osteoblast differentiation induced by statins. Simvastatin at 10(-7) M markedly increased mRNA expression for bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF), alkaline phosphatase, type I collagen, bone sialoprotein, and osteocalcin (OCN) in nontransformed osteoblastic cells (MC3T3-E1), while suppressing gene expression for collagenase-1, and collagenase-3. Extracellular accumulation of proteins such as VEGF, OCN, collagenase-digestive proteins, and noncollagenous proteins was increased in the cells treated with 10(-7) M simvastatin, or 10(-8) M cerivastatin. In the culture of MC3T3-E1 cells, statins stimulated mineralization; pretreating MC3T3-E1 cells with mevalonate, or geranylgeranyl pyrophosphate (a mevalonate metabolite) abolished statin-induced mineralization. Statins stimulate osteoblast differentiation in vitro, and may hold promise drugs for the treatment of osteoporosis in the future.  相似文献   

4.
Apocynin is a naturally occurring methoxy-substituted catechol, experimentally used as an inhibitor of NADPH-oxidase. In the present study, the effect of apocynin on the function of osteoblastic MC3T3-E1 cells was studied. Apocynin caused a significant elevation of alkaline phosphatase (ALP) activity, collagen content, and mineralization in the cells (P < 0.05). Antimycin A (AMA), which inhibits complex III of the electron transport system, has been used as a reactive oxygen species (ROS) generator in biological systems. We exposed cultured osteoblastic MC3T3-E1 cells to AMA with or without pretreatment with apocynin. Apocynin significantly (P < 0.05) increased cell survival, calcium deposition, and osteoprotegerin release and decreased the production of ROS and osteoclast differentiation inducing factors such as TNF-α, IL-6, and receptor activator of nuclear factor-kB ligand (RANKL) in the presence of AMA. These results demonstrate that apocynin can protect osteoblasts from mitochondrial dysfunction-induced toxicity and may have positive effects on skeletal structure.  相似文献   

5.
6.
In this in vitro study, the hypothesis that the beneficial effects of dietary genistein on bone are through the modulation of the bone marker synthesis by osteoblastic MC3T3-E1 cells was tested, and the possible roles of estrogen receptors in the actions of genistein on osteoblastic cells were also examined. Interleukin-6 production was decreased 40% to 60% in osteoblastic cells treated with genistein from either day 8-16 or day 12-16, at dietarily achievable concentrations (10(-10) to 10(-8) M) (P<0.05). The mRNA expression of osteoprotegerin increased about 140% in cells treated from with genistein day 4-8 at a concentration of 10(-8) M (P<0.05). The ratio of estrogen receptor-alpha to beta expression increased 10-fold from day 0 to 12 of culture (P<0.05). Correlating with this time-dependent variation in estrogen receptor expression, treatments of 17beta-estradiol and genistein had opposite dose patterns on the ratio of estrogen receptor-alpha to beta expression following treatment from day 4 to 6 compared to from day 0 to 2. The addition of ICI-182,780, an estrogen receptor blocker, reduced the inhibitory effect of genistein on IL-6 production by 30-50%. In summary, these findings suggest that the beneficial skeletal effects of genistein, at dietarily achievable levels, appear to be mediated, at least in part, by interleukin-6 and osteoprotegerin, and estrogen receptors play important roles in the inhibition of interleukin-6 synthesis by genistein in osteoblastic MC3T3-E1 cells.  相似文献   

7.
This study examined the role of AMPK activation in osteoblast differentiation and the underlining mechanism. An AMPK activator (AICAR or metformin) stimulated osteoblast differentiation with increases in ALP and OC protein production as well as the induction of AMPK phosphorylation in MC3T3E1 cells. In addition, metformin induced the phosphorylation of Smad1/5/8 and expression of Dlx5 and Runx2, whereas compound C or dominant negative AMPK inhibited these effects. Transient transfection studies also showed that metformin increased the BRE-Luc and Runx2-Luc activities, which were inhibited by DN-AMPK or compound C. Down-regulation of Dlx5 expression by siRNA suppressed metformin-induced Runx2 expression. These results suggest that the activation of AMPK stimulates osteoblast differentiation via the regulation of Smad1/5/8-Dlx5-Runx2 signaling pathway.  相似文献   

8.
Yuan LQ  Liu YS  Luo XH  Guo LJ  Xie H  Lu Y  Wu XP  Liao EY 《Amino acids》2008,35(1):123-127
Tissue inhibitor of metalloproteinases (TIMPs) plays an essential role in the regulation of bone metabolism. Here we report that recombinant tissue metalloproteinase inhibitor-3 (TIMP-3) protein induces the apoptosis of MC3T3-E1 osteoblasts. Cell apoptosis was detected by sandwich-enzyme-immunoassay. Fas and Fasl protein levels were determined by Western blot analysis. The enzyme substrate was used to assess the activation of caspase-3 and caspase-8. The phosphorylation of JNK, p38 and ERK1/2 was examined by Western blot analysis. The ELISA suggested that TIMP-3 promoted MC3T3-E1 cell apoptosis. TIMP-3 treatment induced the expression of Fas and Fasl proteins, and the activation of caspase-8 and caspase-3. TIMP-3 treatment induced p38 and ERK phosphorylation. SB203580 and PD98059, the inhibitor of p38 and ERK, respectively, abolished the TIMP-3 effect on osteoblast apoptosis. In conclusion, the signal pathway through which TIMP-3 induces MC3T3-E1 cell apoptosis, mediated by Fas and involves the p38 and ERK signal transduction pathways.  相似文献   

9.
10.
The orphan nuclear receptor Nurr1 is primarily expressed in the central nervous system. It has been shown that Nurr1 is necessary for terminal differentiation of dopaminergic (DA) neurons in ventral midbrain. The receptor, however, is also expressed in other organs including bone, even though the role of Nurr1 is not yet understood. Therefore, we investigated the role of Nurr1 in osteoblast differentiation in MC3T3-E1 cells and calvarial osteoblasts derived from Nurr1 null newborn pups. Our results revealed that reduced Nurr1 expression, using Nurr1 siRNA in MC3T3-E1 cells, affected the expression of osteoblast differentiation marker genes, osteocalcin (OCN) and collagen type I alpha 1 (COL1A1), as measured by quantitative real-time PCR. The activity of alkaline phosphatase (ALP), another osteoblast differentiation marker gene, was also decreased in Nurr1 siRNA-treated MC3T3-E1 cells. In addition, Nurr1 overexpression increased OCN and COL1A1 expression. Furthermore, consistent with these results, during osteoblast differentiation, the expression of osteoblast marker genes was decreased in primary cultured mouse calvarial osteoblasts derived from Nurr1 null mice. Collectively, our results suggest that Nurr1 is important for osteoblast differentiation.  相似文献   

11.
Bone tissue homeostasis relies upon the ability of cells to detect and interpret extracellular signals that direct changes in tissue architecture. This study utilized a four-point bending model to create both fluid shear and strain forces (loading) during the time-dependent progression of MC3T3-E1 preosteoblasts along the osteogenic lineage. Loading was shown to increase cell number, alkaline phosphatase (ALP) activity, collagen synthesis, and the mRNA expression levels of Runx2, osteocalcin (OC), osteopontin, and cyclo-oxygenase-2. However, mineralization in these cultures was inhibited, despite an increase in calcium accumulation, suggesting that loading may inhibit mineralization in order to increase matrix deposition. Loading also increased fibroblast growth factor receptor-3 (FGFR3) expression coincident with an inhibition of FGFR1, FGFR4, FGF1, and extracellular signal-related kinase (ERK)1/2 phosphorylation. To examine whether these loading-induced changes in cell phenotype and FGFR expression could be attributed to the inhibition of ERK1/2 phosphorylation, cells were grown for 25 days in the presence of the MEK1/2 inhibitor, U0126. Significant increases in the expression of FGFR3, ALP, and OC were observed, as well as the inhibition of FGFR1, FGFR4, and FGF1. However, U0126 also increased matrix mineralization, demonstrating that inhibition of ERK1/2 phosphorylation cannot fully account for the changes observed in response to loading. In conclusion, this study demonstrates that preosteoblasts are mechanoresponsive, and that long-term loading, whilst increasing proliferation and differentiation of preosteoblasts, inhibits matrix mineralization. In addition, the increase in FGFR3 expression suggests that it may have a role in osteoblast differentiation.  相似文献   

12.
Special AT-rich sequence-binding protein (SATB) plays a critical role in bone generation and osteoblast differentiation. In the present study, the differentially expressed genes by SATB2 overexpression were analyzed in MC3T3-E1 osteoblast-like cells using Alizarin red S staining, wound healing assay and Agilent's Human Oligo Microarray. Calcium mineralization and motility were significantly enhanced in SATB2-overexpressed cells compared with untreated control. In addition, using the GeneSpringGX 7.3 program to compare the identified genes expressed in SATB2-overexpresed cells with untreated control, we found several unique genes closely associated with osteoblast differentiation, including SOX2, MBP2, WNT11 and MEN1 (up-regulated genes), and ILK, FGF23, FGFR2, and SNAI1 (down-regulated genes). Consistent with microarray data, real-time RT-PCR confirmed the significant up- and down-regulation of these genes at mRNA level in SATB2-overexpressed MC3T3-E1 cells. Overall, our findings suggest that the molecular regulation of SATB2 can be an attractive approach to develop a novel therapeutic strategy for bone-related diseases.  相似文献   

13.
14.
15.
Activation of fibroblast growth factor receptors (FGFRs) requires the formation of a ternary complex between fibroblast growth factors (FGFs), FGFRs, and heparan sulfate proteoglycans, which are all located on the cell surface and the basement membrane (BM)/extracellular matrix (ECM). Heparan sulfate proteoglycans appear to stabilize FGFs by inhibiting the rapid degradation of FGFs normally observed in solution. Because of the pivotal role of FGFs in proliferative and developmental pathways, a number of recent studies have attempted to engineer microenvironments to stabilize growth factors for use in applications in tissue culture and regenerative medicine. In this communication, we demonstrate that covalent linkage of FGF-2 to nanofibrillar surfaces (defined as covalently bound FGF-2) composed of a network of polyamide nanofibers resulted in the maintenance of the biological efficacy of FGF-2 when stored dry for at least 6 months at 25°C or 4°C. Moreover, covalently bound FGF-2 was more potent than FGF-2 in solution when measured in cellular assays of proliferation and viability using a variety of cell types. Covalently bound FGF-2 also strongly activated FGFR, extracellular signal-regulated kinase (ERK1/2), and c-fos. Hence cell-signaling molecules can be incorporated into a synthetic nanofibrillar surface, providing a novel means to enhance their stability and biological activity.  相似文献   

16.
17.
While the roles of the mammalian target of rapamycin (mTOR) signaling in regulation of cell growth, proliferation, and survival have been well documented in various cell types, its actions in osteoblasts are poorly understood. In this study, we determined the effects of rapamycin, a specific inhibitor of mTOR, on osteoblast proliferation and differentiation using MC3T3-E1 preosteoblastic cells (MC-4) and primary mouse bone marrow stromal cells (BMSCs). Rapamycin significantly inhibited proliferation in both MC-4 cells and BMSCs at a concentration as low as 0.1 nM. Western blot analysis shows that rapamycin treatment markedly reduced levels of cyclin A and D1 protein in both cell types. In differentiating osteoblasts, rapamycin dramatically reduced osteoblast-specific osteocalcin (Ocn), bone sialoprotein (Bsp), and osterix (Osx) mRNA expression, ALP activity, and mineralization capacity. However, the drug treatment had no effect on osteoblast differentiation parameters when the cells were completely differentiated. Importantly, rapamycin markedly reduced levels of Runx2 protein in both proliferating and differentiating but not differentiated osteoblasts. Finally, overexpression of S6K in COS-7 cells significantly increased levels of Runx2 protein and Runx2 activity. Taken together, our studies demonstrate that mTOR signaling affects osteoblast functions by targeting osteoblast proliferation and the early stage of osteoblast differentiation.  相似文献   

18.
Jang WG  Kim EJ  Koh JT 《BMB reports》2011,44(11):735-740
Tunicamycin, an endoplasmic reticulum (ER) stress inducer, specifically inhibits N-glycosylation. The cyclic AMP (cAMP) response element-binding protein H (CREBH) was previously shown to be regulated by UPR-dependent proteolytic cleavage in the liver. On the other hand, the role of CREBH in other tissues is unknown. In the present study, tunicamycin increased the level of CREBH activation (cleavage) as well as mRNA expression in osteoblast cells. Adenoviral (Ad) overexpression of CREBH suppressed BMP2-induced expression of alkaline phosphatase (ALP) and osteocalcin (OC). Interestingly, the BMP2-induced OASIS (structurally similar to CREBH, a positive regulator of osteoblast differentiation) expression was also inhibited by CREBH overexpression. In addition, inhibition of CREBH expression using siRNA reversed the tunicamycin-suppressed ALP and OC expression. These results suggest that CREBH inhibited osteoblast differentiation via suppressing BMP2-induced ALP, OC and OASIS expression in mouse calvarial derived osteoblasts.  相似文献   

19.
20.
We determined the effects of yolk water-soluble protein (YSP) on bone formation in pre-osteoblastic MC3T3-E1 cells. YSP (50-5,000 microg/ml) increased cell proliferation and collagen content. Alkaline phosphatase (ALP) activity was also increased by YSP treatment. After enhancement of ALP activity, significant augmentation of calcification was observed. These results suggest that YSP is a promising agent for the prevention and treatment of bone loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号