共查询到20条相似文献,搜索用时 15 毫秒
1.
Christopher R. Smaga;Samantha L. Bock;Josiah M. Johnson;Thomas Rainwater;Randeep Singh;Vincent Deem;Andrew Letter;Arnold Brunell;Benjamin B. Parrott; 《Ecology and evolution》2024,14(2):e10915
Maternal provisioning and the developmental environment are fundamental determinants of offspring traits, particularly in oviparous species. However, the extent to which embryonic responses to these factors differ across populations to drive phenotypic variation is not well understood. Here, we examine the contributions of maternal provisioning and incubation temperature to hatchling morphological and metabolic traits across four populations of the American alligator (Alligator mississippiensis), encompassing a large portion of the species' latitudinal range. Our results show that whereas the influence of egg mass is generally consistent across populations, responses to incubation temperature show population-level variation in several traits, including mass, head length, head width, and residual yolk mass. Additionally, the influence of incubation temperature on developmental rate is greater at northern populations, while the allocation of maternal resources toward fat body mass is greater at southern populations. Overall, our results suggest that responses to incubation temperature, relative to maternal provisioning, are a larger source of interpopulation phenotypic variation and may contribute to the local adaptation of populations. 相似文献
2.
It has been suggested that climate change at the Cretaceous-Palaeogene (K-Pg) boundary, initiated by a bolide impact or volcanic eruptions, caused species with temperature-dependent sex determination (TSD), including dinosaurs, to go extinct because of a skewed sex ratio towards all males. To test this hypothesis, the sex-determining mechanisms (SDMs) of Cretaceous tetrapods of the Hell Creek Formation (Montana, USA) were inferred using parsimony optimizations of SDMs on a tree, including Hell Creek species and their extant relatives. Although the SDMs of non-avian dinosaurs could not be inferred, we were able to determine the SDMs of 62 species; 46 had genotypic sex determination (GSD) and 16 had TSD. The TSD hypothesis for extinctions performed poorly, predicting between 32 and 34 per cent of survivals and extinctions. Most surprisingly, of the 16 species with TSD, 14 of them survived into the Early Palaeocene. In contrast, 61 per cent of species with GSD went extinct. Possible explanations include minimal climate change at the K-Pg, or if climate change did occur, TSD species that survived had egg-laying behaviour that prevented the skewing of sex ratios, or had a sex ratio skewed towards female rather than male preponderance. Application of molecular clocks may allow the SDMs of non-avian dinosaurs to be inferred, which would be an important test of the pattern discovered here. 相似文献
3.
Genetic evidence for co-occurrence of chromosomal and thermal sex-determining systems in a lizard 总被引:1,自引:0,他引:1
An individual's sex depends upon its genes (genotypic sex determination or GSD) in birds and mammals, but reptiles are more complex: some species have GSD whereas in others, nest temperatures determine offspring sex (temperature-dependent sex determination). Previous studies suggested that montane scincid lizards (Bassiana duperreyi, Scincidae) possess both of these systems simultaneously: offspring sex is determined by heteromorphic sex chromosomes (XX-XY system) in most natural nests, but sex ratio shifts suggest that temperatures override chromosomal sex in cool nests to generate phenotypically male offspring even from XX eggs. We now provide direct evidence that incubation temperatures can sex-reverse genotypically female offspring, using a DNA sex marker. Application of exogenous hormone to eggs also can sex-reverse offspring (oestradiol application produces XY as well as XX females). In conjunction with recent work on a distantly related lizard taxon, our study challenges the notion of a fundamental dichotomy between genetic and thermally determined sex determination, and hence the validity of current classification schemes for sex-determining systems in reptiles. 相似文献
4.
High temperature (36° C) treatment during sexual differentiation caused significant changes in sex ratio in YY male Nile tilapia Oreochromis niloticus fry (64.5% males compared to 100.0% males at 28° C), while dietary treatment with a chemical aromatase inhibitor (AI: Fadrozole™ CGS16949A) during this period suppressed the high temperature feminization (98.9% males). This implies that cytochrome P450 aromatase is mechanistically associated with temperature-dependent sex determination (TSD) in this species. XY male fry did not show significant sex reversal at 36° C. In XX female fry, high temperature treatment resulted in significant masculinization (62.5% males compared with 21.9% males at 28° C), while treatment with AI at either temperature resulted in very high proportions of males (100.0% males at 36° C; 99.0% males at 28° C). These results confirm the importance of aromatase in sexual differentiation in the Nile tilapia below the TSD threshold and suggest that it also plays a role in TSD, at least in the YY genotype. 相似文献
5.
C. A. Struussmann S. Moriyama E. F. Hanke J. C. Calsina Cota F. Takashima 《Journal of fish biology》1996,48(4):643-651
Temperature regimes of 17 ± 1°C and 21 ±1°C early in development of pejerrey Odontesthes bonariensis produced nearly all females, whereas at 25 ± 1°C variable, sometimes male-biased sex-ratios were obtained. The critical period of thermolabile sex determination seemed to occur between 25 and 50 days post-hatch (about 11 and 21 mm s.i.) at low temperatures (17–20°C) and between 0 and 25 days (about 7 and 15 mm) at high temperatures (22–25°C). The likelihood of expression of temperature-dependent sex determination in natural populations and the possible adaptive significance of environmental sex determination in pejerrey are discussed. 相似文献
6.
Sex is determined genetically in some species (genotypic sex determination, or GSD) and by the environment (environmental sex determination, or ESD) in others. The two systems are generally viewed as incompatible alternatives, but we have found that sex determination in a species of montane lizard ( Bassiana duperreyi , Scincidae) in south-eastern Australia is simultaneously affected by sex chromosomes and incubation temperatures, as well as being related to egg size. This species has strongly heteromorphic sex chromosomes, and yet incubation at thermal regimes characteristic of cool natural nests generates primarily male offspring. We infer that incubation temperatures can over-ride genetically determined sex in this species, providing a unique opportunity to explore these alternative sex-determining systems within a single population. 相似文献
7.
Pilar Santidrián Tomillo James R. Spotila 《BioEssays : news and reviews in molecular, cellular and developmental biology》2020,42(11):2000146
The adaptive significance of temperature-dependent sex determination (TSD) in reptiles remains unknown decades after TSD was first identified in this group. Concurrently, there is growing concern about the effect that rising temperatures may have on species with TSD, potentially producing extremely biased sex ratios or offspring of only one sex. The current state-of the-art in TSD research on sea turtles is reviewed here and, against current paradigm, it is proposed that TSD provides an advantage under warming climates. By means of coadaptation between early survival and sex ratios, sea turtles are able to maintain populations. When offspring survival declines at high temperatures, the sex that increases future fecundity (females) is produced, increasing resilience to climate warming. TSD could have helped reptiles to survive mass extinctions in the past via this model. Flaws in research on sex determination in sea turtles are also identified and it is suggested that the development of new techniques will revolutionize the field. 相似文献
8.
Sex in many organisms is a dichotomous phenotype--individuals are either male or female. The molecular pathways underlying sex determination are governed by the genetic contribution of parents to the zygote, the environment in which the zygote develops or interaction of the two, depending on the species. Systems in which multiple interacting influences or a continuously varying influence (such as temperature) determines a dichotomous outcome have at least one threshold. We show that when sex is viewed as a threshold trait, evolution in that threshold can permit novel transitions between genotypic and temperature-dependent sex determination (TSD) and remarkably, between male (XX/XY) and female (ZZ/ZW) heterogamety. Transitions are possible without substantive genotypic innovation of novel sex-determining mutations or transpositions, so that the master sex gene and sex chromosome pair can be retained in ZW-XY transitions. We also show that evolution in the threshold can explain all observed patterns in vertebrate TSD, when coupled with evolution in embryonic survivorship limits. 相似文献
9.
Sex allocation theory predicts that mothers should adjust their sex-specific reproductive investment in relation to the predicted fitness returns from sons versus daughters. Sex allocation theory has proved to be successful in some invertebrate taxa but data on vertebrates often fail to show the predicted shift in sex ratio or sex-specific resource investment. This is likely to be partly explained by simplistic assumptions of vertebrate life-history and mechanistic constraints, but also because the fundamental assumption of sex-specific fitness return on investment is rarely supported by empirical data. In short-lived species, the time of hatching or parturition can have a strong impact on the age and size at maturity. Thus, if selection favors adult sexual-size dimorphism, females can maximize their fitness by adjusting offspring sex over the reproductive season. We show that in mallee dragons, Ctenophorus fordi, date of hatching is positively related to female reproductive output but has little, if any, effect on male reproductive success, suggesting selection for a seasonal shift in offspring sex ratio. We used a combination of field and laboratory data collected over two years to test if female dragons adjust their sex allocation over the season to ensure an adaptive match between time of hatching and offspring sex. Contrary to our predictions, we found no effect of laying date on sex ratio, nor did we find any evidence for within-female between-clutch sex-ratio adjustment. Furthermore, there was no differential resource investment into male and female offspring within or between clutches and sex ratios did not correlate with female condition or any partner traits. Consequently, despite evidence for selection for a seasonal sex-ratio shift, female mallee dragons do not seem to exercise any control over sex determination. The results are discussed in relation to potential constraints on sex-ratio adjustment, alternative selection pressures, and the evolution of temperature-dependent sex determination. 相似文献
10.
11.
Reproducing lizards modify sex allocation in response to operational sex ratios 总被引:1,自引:0,他引:1
下载免费PDF全文

Sex-allocation theory suggests that selection may favour maternal skewing of offspring sex ratios if the fitness return from producing a son differs from that for producing a daughter. The operational sex ratio (OSR) may provide information about this potential fitness differential. Previous studies have reached conflicting conclusions about whether or not OSR influences sex allocation in viviparous lizards. Our experimental trials with oviparous lizards (Amphibolurus muricatus) showed that OSR influenced offspring sex ratios, but in a direction opposite to that predicted by theory: females kept in male-biased enclosures overproduced sons rather than daughters (i.e. overproduced the more abundant sex). This response may enhance fitness if local OSRs predict survival probabilities of offspring of each sex, rather than the intensity of sexual competition. 相似文献
12.
Temperature-dependent sex determination (TSD) was first reported in 1966 in an African lizard. It has since been shown that TSD occurs in some fish, several lizards, tuataras, numerous turtles and all crocodilians. Extreme temperatures can also cause sex reversal in several amphibians and lizards with genotypic sex determination. Research in TSD species indicates that estrogen signaling is important for ovary development and that orthologs of mammalian genes have a function in gonad differentiation. Nevertheless, the mechanism that actually transduces temperature into a biological signal for ovary versus testis development is not known in any species. Classical genetics could be used to identify the loci underlying TSD, but only if there is segregating variation for TSD. Here, we use the ‘animal model'' to analyze inheritance of sexual phenotype in a 13-generation pedigree of captive leopard geckos, Eublepharis macularius, a TSD reptile. We directly show genetic variance and genotype-by-temperature interactions for sex determination. Additive genetic variation was significant at a temperature that produces a female-biased sex ratio (30 °C), but not at a temperature that produces a male-biased sex ratio (32.5 °C). Conversely, dominance variance was significant at the male-biased temperature (32.5 °C), but not at the female-biased temperature (30 °C). Non-genetic maternal effects on sex determination were negligible in comparison with additive genetic variance, dominance variance and the primary effect of temperature. These data show for the first time that there is segregating variation for TSD in a reptile and consequently that a quantitative trait locus analysis would be practicable for identifying the genes underlying TSD. 相似文献
13.
Turk Rhen Jeffrey W. Lang 《Evolution; international journal of organic evolution》1998,52(5):1514-1520
Unlike birds and mammals, in many reptiles the temperature experienced by a developing embryo determines its gonadal sex. To understand how temperature-dependent sex determination (TSD) evolves, we must first determine the nature of genetic variation for sex ratio. Here, we analyze among-family variation for sex ratio in three TSD species: the American alligator (Alligator mississipiensis), the common snapping turtle (Chelydra serpentina) and the painted turtle (Chrysemys picta). Significant family effects and significant temperature effects were detected in all three species. In addition, family-by-temperature interactions were evident in the alligator and the snapping turtle, but not in the painted turtle. Overall, the among-family variation detected in this study indicates potential for sex-ratio evolution in at least three reptiles with TSD. Consequently, climate change scenarios that are posited on the presumption that sex-ratio evolution in TSD reptiles is genetically constrained may require reevaluation. 相似文献
14.
Global warming could threaten over 400 species with temperature-dependent sex determination (TSD) worldwide, including all species of sea turtle. During embryonic development, rising temperatures might lead to the overproduction of one sex and, in turn, could bias populations’ sex ratios to an extent that threatens their persistence. If climate change predictions are correct, and biased sex ratios reduce population viability, species with TSD may go rapidly extinct unless adaptive mechanisms, whether behavioural, physiological or molecular, exist to buffer these temperature-driven effects. Here, we summarize the discovery of the TSD phenomenon and its still elusive evolutionary significance. We then review the molecular pathways underpinning TSD in model species, along with the hormonal mechanisms that interact with temperatures to determine an individual's sex. To illustrate evolutionary mechanisms that can affect sex determination, we focus on sea turtle biology, discussing both the adaptive potential of this threatened TSD taxon, and the risks associated with conservation mismanagement. 相似文献
15.
16.
17.
Understanding the mechanisms that determine the development of a bilaterally symmetrical trait is crucial to the interpretation
of patterns of fluctuating asymmetry (FA). Experimental and theoretical studies have indicated that feedback mechanisms both
within and between developing traits, may participate in the developmental control of asymmetry. This study provides evidence
that naturally occurring patterns of FA are affected by interactions between different traits. We found positive between‐trait
correlations in signed FA values for tibia lengths on different legs, but not between wing and tibia FA in two moth species.
Further research should investigate if trait functionality is related to this presumed correlated development. An extension
of the Rashevsky–Turing model of morphogenesis further showed that correlations between the signed FA values can be generated
by feedback mechanisms that regulate growth patterns between traits. We argue that such feedback mechanisms can be expected
to be widespread and show that between‐trait correlations in the unsigned FA then become confounded with correlations in the
signed FA. In addition, correlated development appeared to invalidate the use of the hypothetical repeatability to translate
correlations between the unsigned FA values into correlations in the presumed underlying developmental instability. In conclusion,
the presence of an organism‐wide asymmetry, which are most frequently found in morphologically integrated traits, may be even
less common than previously thought.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
18.
Lyndsey K. Tanabe Joanne Ellis Islam Elsadek Michael L. Berumen 《Conservation Science and Practice》2020,2(10):e266
Climate change poses a serious threat to species that demonstrate temperature-dependent sex determination, including marine turtles. Increased temperatures can result in highly female-skewed sex ratios and decreased hatching success. The pivotal temperature that delineates hatchling sex ratios is commonly considered to be 29.2°C, but whether this threshold applies to turtles in the Red Sea region has not been tested in situ. For all species of marine turtles, there is a supposed thermal range of 25–33°C in which egg incubation is successful, with prolonged temperatures above 33°C resulting in morphological abnormalities and hatchling mortality. Sand temperature data were collected from May–September 2018 from the average nesting depth of hawksbill (Eretmochelys imbricata) and green turtles (Chelonia mydas) at five study sites. We calculated the expected sex ratio based on a maximum likelihood model. The sand temperature profile at four of the sites exceeded the pivotal temperature (29.2°C) throughout the study duration, which suggests feminization of turtles could be occurring; however, the pivotal temperature in this region still needs to be empirically confirmed. The percentage of days with sand temperature exceeding the maximum thermal threshold between June 3, and September 16, 2018, was site-specific rather than determined by latitudinal temperature gradients, and ranged between 0 and 100% of days. Maximum temperature recordings were as high as 36.0 and 35.3°C at 30 and 50 cm depth, respectively. Nesting sites in the Red Sea region could already be exceeding the thermal limits and may be particularly vulnerable to rising temperatures. Sites with lower sand temperatures, such as Small Gobal Island, may represent priority areas for conservation efforts. Alternatively, local adaptation may be a reality under extremely warm conditions, thus, further research into the thermal tolerance of hatchlings in the region could provide insight on how they might adapt to future climate change. 相似文献
19.
Houle 《Journal of evolutionary biology》2000,13(4):720-730
The relationship between developmental stability and morphological asymmetry is derived under the standard view that structures on each side of an individual develop independently and are normally distributed. I use developmental variance of sizes of parts, VD, as the converse of developmental stability, and assume that VD follows a gamma distribution. Repeatability of asymmetry, a measure of how informative asymmetry is about VD, is quite insensitive to the variance in VD, for example only reaching 20% when the coefficient of variation of VD is 100%. The coefficient of variation of asymmetry, CVFA, also increases very slowly with increasing population variation in VD. CVFA values from empirical data are sometimes over 100%, implying that developmental stability is sometimes more variable than any previously studied type of trait. This result suggests that alternatives to this model may be needed. 相似文献
20.
Abstract.— Systems with genetic variation for the primary sex ratio are important for testing sex-ratio theory and for understanding how this variation is maintained. Evidence is presented for heritable variation of the primary sex ratio in the harpacticoid copepod Tigriopus californicus. Variation in the primary sex ratio among families cannot be accounted for by Mendelian segregation of sex chromosomes. The covariance in sex phenotype between full-sibling clutches and between mothers and offspring suggests that this variation has a polygenic basis. Averaged over four replicates, the full-sibling heritability of sex tendency is 0.13 ± 0.040; and the mother-offspring heritability of sex tendency is 0.31 ± 0.216. Genetic correlations in the sex phenotype across two temperature treatments indicate large genotype-by-temperature interactions. Future experiments need to distinguish between zygotic, parental, or cytoplasmic mechanisms of sex determination in T. californicus. 相似文献