首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Evans EA  Chen WC  Tan MW 《Aging cell》2008,7(6):879-893
The Caenorhabditis elegans DAF-2 insulin-like signaling pathway, which regulates lifespan and stress resistance, has also been implicated in resistance to bacterial pathogens. Loss-of-function daf-2 and age-1 mutants have increased lifespans and are resistant to a variety of bacterial pathogens. This raises the possibility that the increased longevity and the pathogen resistance of insulin-like signaling pathway mutants are reflections of the same underlying mechanism. Here we report that regulation of lifespan and resistance to the bacterial pathogen Pseudomonas aeruginosa is mediated by both shared and genetically distinguishable mechanisms. We find that loss of germline proliferation enhances pathogen resistance and this effect requires daf-16, similar to the regulation of lifespan. In contrast, the regulation of pathogen resistance and lifespan is decoupled within the DAF-2 pathway. Long-lived mutants of genes downstream of daf-2, such as pdk-1 and sgk-1, show wildtype resistance to pathogens. However, mutants of akt-1 and akt-2, which we find to individually have modest effects on lifespan, show enhanced resistance to pathogens. We also demonstrate that pathogen resistance of daf-2, akt-1, and akt-2 mutants is associated with restricted bacterial colonization, and that daf-2 mutants are better able to clear an infection after challenge with P. aeruginosa. Moreover, we find that pathogen resistance among insulin-like signaling mutants is associated with increased expression of immunity genes during infection. Other processes that affect organismal longevity, including Jun kinase signaling and caloric restriction, do not affect resistance to bacterial pathogens, further establishing that aging and innate immunity are regulated by genetically distinct mechanisms.  相似文献   

3.
4.
Fisher AL  Lithgow GJ 《Aging cell》2006,5(2):127-138
The orphan nuclear hormone receptor gene daf-12 in Caenorhabditis elegans plays a key role in the regulation of development and determination of adult longevity. To understand the effects of daf-12 on aging we characterized the lifespan of loss-of-function and gain-of-function daf-12 alleles that have been identified on the basis of their effects on dauer development. We find that these mutations have opposing effects on longevity and resistance to oxidative and thermal stress which makes daf-12 the first gene with alleles that can extend or shorten lifespan. We find that the shortened lifespan of the loss-of-function mutation is due to accelerated aging in young adulthood rather than an adverse effect of the mutation on development. Microarray analysis of worms carrying the two alleles revealed a relatively small number of genes differentially expressed between the two genotypes. Comparison of the expression profiles with the profiles associated with dauer formation and long-lived daf-2 mutants revealed that while the profiles are largely different, there is significant overlap among the genes down-regulated, but not up-regulated, in all profiles. Several of these genes down-regulated in multiple long-lived worms have known effects on lifespan, and many of the genes belong to a family of poorly characterized genes that are strongly down-regulated in dauers, daf-2 mutants, and long-lived daf-12 mutants. Our results point to daf-12 modulating aging and stress responses in part through the repression of specific genes, and emphasize the role that the repression of genes that curtail maximal lifespan plays in lifespan determination.  相似文献   

5.
Molecular advances of the past decade have led to the discovery of a myriad of 'aging genes' (methuselah, Indy, InR, Chico, superoxide dismutase) that extend Drosophila lifespan by up to 85%. Despite this life extension, these mutants are no longer lived than at least some recently wild-caught strains. Typically, long-lived mutants are identified in relatively short-lived genetic backgrounds, and their effects are rarely tested in genetic backgrounds other than the one in which they were isolated or derived. However, the mutant's high-longevity phenotype may be dependent on interactions with alleles that are common in short-lived laboratory strains. Here we set out to determine whether one particular mutant could extend lifespan in long-lived genetic backgrounds in the fruit fly, Drosophila melanogaster. We measured longevity and resistance to thermal stress in flies that were transgenically altered to overexpress human superoxide dismutase (SOD) in the motorneurones in each of 10 genotypes. Each genotype carried the genetic background from a different naturally long-lived wild-caught Drosophila strain. While SOD increased lifespan on average, the effect was genotype- and sex-specific. Our results indicate that naturally segregating genes interact epistatically with the aging gene superoxide dismutase to modify its ability to extend longevity. This study points to the need to identify mutants that increase longevity not only in the lab strain of origin but also in naturally long-lived genetic backgrounds.  相似文献   

6.
DE Shore  CE Carr  G Ruvkun 《PLoS genetics》2012,8(7):e1002792
Many genetic and physiological treatments that extend lifespan also confer resistance to a variety of stressors, suggesting that cytoprotective mechanisms underpin the regulation of longevity. It has not been established, however, whether the induction of cytoprotective pathways is essential for lifespan extension or merely correlated. Using a panel of GFP-fused stress response genes, we identified the suites of cytoprotective pathways upregulated by 160 gene inactivations known to increase Caenorhabditis elegans longevity, including the mitochondrial UPR (hsp-6, hsp-60), the ER UPR (hsp-4), ROS response (sod-3, gst-4), and xenobiotic detoxification (gst-4). We then screened for other gene inactivations that disrupt the induction of these responses by xenobiotic or genetic triggers, identifying 29 gene inactivations required for cytoprotective gene expression. If cytoprotective responses contribute directly to lifespan extension, inactivation of these genes would be expected to compromise the extension of lifespan conferred by decreased insulin/IGF-1 signaling, caloric restriction, or the inhibition of mitochondrial function. We find that inactivation of 25 of 29 cytoprotection-regulatory genes shortens the extension of longevity normally induced by decreased insulin/IGF-1 signaling, disruption of mitochondrial function, or caloric restriction, without disrupting normal longevity nearly as dramatically. These data demonstrate that induction of cytoprotective pathways is central to longevity extension and identify a large set of new genetic components of the pathways that detect cellular damage and couple that detection to downstream cytoprotective effectors.  相似文献   

7.
Budding yeast shows a progressive decline in viability after entering stationary phase, a phenomenon known as chronological aging. We show here that the fission yeast Schizosaccharomyces pombe also undergoes chronological aging and that the process is regulated by genes controlling two related nutrient signalling pathways. The first pathway includes the serine/threonine cAMP-activated protein kinase Pka1 and the second pathway comprises the serine/threonine kinase Sck2, a homologue of Saccharomyces cerevisiae SCH9. A double mutant for pka1 and sck2 displayed an additive effect on prolonging the fission yeast lifespan, suggesting that these genes regulate related but independent pathways. These long-lived mutants also accumulated less reactive oxygen species and had a delayed initiation of apoptosis compared with wild-type cells. We also found that strains carrying pka1 deletion but not those with sck2 deletion gained resistance to oxidative stress due to exposure to H(2)O(2) or menadione. On the other hand, the additional increase in lifespan shown by the Deltapka1Deltasck2 double-mutant strain correlated with an increased resistance to both oxidative stress and heat shock. These results underscore the importance of nutrient signalling pathways and reactive oxygen species on organismal lifespan and establish S. pombe as a new model organism to study the molecular mechanisms underlying aging.  相似文献   

8.
9.
10.
The relationship between oxidative stress and longevity is a matter of concern in various organisms. We isolated mutants resistant to paraquat from nematode Caenorhabditis elegans. One mutant named mev-4 was long-lived and showed cross-resistance to heat and Dyf phenotype (defective in dye filling). Genetic and sequence analysis revealed that mev-4 had a nonsense mutation on the che-11 gene, homologues of which are involved in formation of cilia and flagella in other organisms. The paraquat resistance was commonly observed in various Dyf mutants and did not depend on the daf-16 gene, whereas the extension of life span did depend on it. Expression of antioxidant enzyme genes seemed normal. These results suggest that chemosensory neurons are a target of oxidative stress and influence longevity dependent on the daf-16 signaling in C. elegans.  相似文献   

11.
Average and maximal lifespan are important biological characteristics of every species, but can be modified by mutations and by a variety of genetic, dietary, environmental, and pharmacological interventions. Mutations or disruption of genes required for biosynthesis or action of growth hormone (GH) produce remarkable extension of longevity in laboratory mice. Importantly, the long-lived GH-related mutants exhibit many symptoms of delayed and/or slower aging, including preservation of physical and cognitive functions and resistance to stress and age-related disease. These characteristics could be collectively described as “healthy aging” or extension of the healthspan. Extension of both the healthspan and lifespan in GH-deficient and GH-resistant mice appears to be due to multiple interrelated mechanisms. Some of these mechanisms have been linked to healthy aging and genetic predisposition to extended longevity in humans. Enhanced insulin sensitivity combined with reduced insulin levels, reduced adipose tissue, central nervous system inflammation, and increased levels of adiponectin represent such mechanisms. Further progress in elucidation of mechanisms that link reduced GH action to delayed and healthy aging should identify targets for lifestyle and pharmacological interventions that could benefit individuals as well as society.  相似文献   

12.
13.
Many Caenorhabditis elegans mutants with dysfunctional mitochondrial electron transport chain are surprisingly long lived. Both short-lived (gas-1(fc21)) and long-lived (nuo-6(qm200)) mutants of mitochondrial complex I have been identified. However, it is not clear what are the pathways determining the difference in longevity. We show that even in a short-lived gas-1(fc21) mutant, many longevity assurance pathways, shown to be important for lifespan prolongation in long-lived mutants, are active. Beside similar dependence on alternative metabolic pathways, short-lived gas-1(fc21) mutants and long-lived nuo-6(qm200) mutants also activate hypoxia-inducible factor –1α (HIF-1α) stress pathway and mitochondrial unfolded protein response (UPRmt). The major difference that we detected between mutants of different longevity, is in the massive loss of complex I accompanied by upregulation of complex II levels, only in short-lived, gas-1(fc21) mutant. We show that high levels of complex II negatively regulate longevity in gas-1(fc21) mutant by decreasing the stability of complex I. Furthermore, our results demonstrate that increase in complex I stability, improves mitochondrial function and decreases mitochondrial stress, putting it inside a “window” of mitochondrial dysfunction that allows lifespan prolongation.  相似文献   

14.
Studies of the effects of single-gene mutations on longevity in Caenorhabditis elegans, Drosophila melanogaster and Mus musculus identified homologous, highly conserved signalling pathways that influence ageing. In each of these very distantly related species, single mutations which lead-directly or indirectly-to reduced insulin, insulin-like growth factor (IGF) or insulin/IGF-like signalling (IIS) can produce significant increases in both average and maximal lifespan. In mice, most of the life-extending mutations described to date reduce somatotropic (growth hormone (GH) and IGF-1) signalling. The reported extensions of longevity are most robust in GH-deficient and GH-resistant mice, while suppression of somatotropic signalling 'downstream' of the GH receptor produces effects that are generally smaller and often limited to female animals. This could be due to GH influencing ageing by both IGF-1-mediated and IGF-1-independent mechanisms. In mutants that have been examined in some detail, increased longevity is associated with various indices of delayed ageing and extended 'healthspan'. The mechanisms that probably underlie the extension of both lifespan and healthspan of these animals include increased stress resistance, improved antioxidant defences, alterations in insulin signalling (e.g. hypoinsulinaemia combined with improved insulin sensitivity in some mutants and insulin resistance in others), a shift from pro- to anti-inflammatory profile of circulating adipokines, reduced mammalian target of rapamycin-mediated translation and altered mitochondrial function including greater utilization of lipids when compared with carbohydrates.  相似文献   

15.
16.
Cells respond to accumulation of misfolded proteins in the endoplasmic reticulum (ER) by activating the unfolded protein response (UPR) signaling pathway. The UPR restores ER homeostasis by degrading misfolded proteins, inhibiting translation, and increasing expression of chaperones that enhance ER protein folding capacity. Although ER stress and protein aggregation have been implicated in aging, the role of UPR signaling in regulating lifespan remains unknown. Here we show that deletion of several UPR target genes significantly increases replicative lifespan in yeast. This extended lifespan depends on a functional ER stress sensor protein, Ire1p, and is associated with constitutive activation of upstream UPR signaling. We applied ribosome profiling coupled with next generation sequencing to quantitatively examine translational changes associated with increased UPR activity and identified a set of stress response factors up-regulated in the long-lived mutants. Besides known UPR targets, we uncovered up-regulation of components of the cell wall and genes involved in cell wall biogenesis that confer resistance to multiple stresses. These findings demonstrate that the UPR is an important determinant of lifespan that governs ER stress and identify a signaling network that couples stress resistance to longevity.  相似文献   

17.
Reduced insulin/IGF-1 signalling and human longevity   总被引:6,自引:0,他引:6  
Evidence is accumulating that aging is hormonally regulated by an evolutionarily conserved insulin/IGF-1 signalling (IIS) pathway. Mutations in IIS components affect lifespan in Caenorhabditis elegans, Drosophila melanogaster and mice. Most long-lived IIS mutants also show increased resistance to oxidative stress. In D. melanogaster and mice, the long-lived phenotype of several IIS mutants is restricted to females. Here, we analysed the relationship between IIS signalling, body height and longevity in humans in a prospective follow-up study. Based on the expected effects (increased or decreased signalling) of the selected variants in IIS pathway components (GHRHR, GH1, IGF1, INS, IRS1), we calculated composite IIS scores to estimate IIS pathway activity. In addition, we analysed the relative impact on lifespan and body size of the separate variants in multivariate models. In women, lower IIS scores are significantly associated with lower body height and improved old age survival. Multivariate analyses showed that these results were most pronounced for the GH1 SNP, IGF1 CA repeat and IRS1 SNP. In females, for variant allele carriers of the GH1 SNP, body height was 2 cm lower (P = 0.007) and mortality 0.80-fold reduced (P = 0.019) when compared with wild-type allele carriers. Thus, in females, genetic variation causing reduced IIS activation is beneficial for old age survival. This effect was stronger for the GH1 SNP than for variation in the conserved IIS genes that were found to affect longevity in model organisms.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号