首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Zygotic genome activation (ZGA) is one of the most critical events at the beginning of mammalian preimplantation embryo development (PED). The mechanisms underlying mouse ZGA remain unclear although it has been widely studied. In the present study, we identified that tricho-rhino-phalangeal syndrome 1 (TRPS1), an atypical GATA family member, is an important factor for ZGA in mouse PED. We found that the Trps1 mRNA level peaked at the one-cell stage while TRPS1 protein did so at the two/four-cell stage. Knockdown of Trps1 by the microinjection of Trps1 siRNA reduced the developmental rate of mouse preimplantation embryos by approximately 30%, and increased the expression of ZGA marker genes MuERV-L and Zscan4d via suppressing the expression of major histone markers H3K4me3 and H3K27me3. Furthermore, Trps1 knockdown decreased the expression of Sox2 but increased Oct4 expression. We conclude that TRPS1 may be indispensable for zygotic genome activation during mouse PED.  相似文献   

6.
7.
酿酒酵母(Saccharomyces cerevisiae)是重要的模式真核微生物,广泛用于基础研究和工业发酵。基于CRISPR/dCas9系统开发的转录调控方法具有可编程、多重性和正交性等优点,在酿酒酵母的基因调控、功能基因组学、代谢工程等研究领域具有巨大潜力。本文关注酿酒酵母中CRISPR/dCas9基因转录调控工具的研究进展,阐述了不同转录调节结构域对dCas9或gRNA活性的调节,设计与优化dCas9和gRNA表达的方法,影响CRISPR/dCas9系统转录调控效率、特异性和通量的靶向性因素,最后总结了该工具在酿酒酵母代谢工程中的应用,并对该技术的未来发展提出了展望。  相似文献   

8.
9.
MLL3 is a histone H3K4 methyltransferase that is frequently mutated in cancer, but the underlying molecular mechanisms remain elusive. Here, we found that MLL3 depletion by CRISPR/sgRNA significantly enhanced cell migration, but did not elevate the proliferation rate of cancer cells. Through RNA-Seq and ChIP-Seq approaches, we identified TNS3 as the potential target gene for MLL3. MLL3 depletion caused downregulation of H3K4me1 and H3K27ac on an enhancer ~ 7 kb ahead of TNS3. 3C assay indicated the identified enhancer interacts with TNS3 promoter and repression of enhancer activity by dCas9-KRAB system impaired TNS3 expression. Exogenous expression of TNS3 in MLL3 deficient cells completely blocked the enhanced cell migration phenotype. Taken together, our study revealed a novel mechanism for MLL3 in suppressing cancer, which may provide novel targets for diagnosis or drug development.Subject terms: Tumour-suppressor proteins, Chromosomes  相似文献   

10.
11.
12.
13.
Timing of cell differentiation is strictly controlled and is crucial for normal development and stem cell differentiation. However, underlying mechanisms regulating differentiation timing are fully unknown. Here, we show a molecular mechanism determining differentiation timing from mouse embryonic stem cells (ESCs). Activation of protein kinase A (PKA) modulates differentiation timing to accelerate the appearance of mesoderm and other germ layer cells, reciprocally correlated with the earlier disappearance of pluripotent markers after ESC differentiation.?PKA activation increases protein expression of G9a, an H3K9 methyltransferase, along with earlier H3K9 dimethylation and DNA methylation in Oct3/4 and Nanog gene promoters. Deletion of G9a completely abolishes PKA-elicited acceleration of differentiation and epigenetic modification. Furthermore, G9a knockout mice show prolonged expressions of?Oct3/4 and Nanog at embryonic day 7.5 and delayed development. In this study, we demonstrate molecular machinery that regulates timing of multilineage differentiation by linking signaling with epigenetics.  相似文献   

14.
15.
16.
17.
作为甲基转移酶MLL/SET1复合体的核心成分之一,ASH2L能够促进组蛋白H3K4me3修饰的形成,并在小鼠早期胚胎发育过程中行使重要功能.在小鼠中,由于启动子的选择性使用,Ash2l会转录成两种不同长度的转录本并形成两种蛋白质亚型:ASH2L-1和ASH2L-2.目前有关该基因在小鼠胚胎发育中的作用机制及不同亚型的功能还不清楚.本文利用CRISPR/Cas9技术特异敲除Ash2l-1并研究该亚型的生理学功能.研究结果发现,当Ash2l-1缺失时,小鼠胚胎在E9.5~E10.5时发生致死.特别是Ash2l-1-/-E9.5胚胎的卵黄囊血管和早期造血发育存在明显缺陷.转录组测序结果显示,Ash2l-1的缺失影响红细胞发育和成熟、血管发生和形成相关基因的表达.H3K4me3的CUT&RUN结果显示,在一些表达下调关键基因的启动子区,H3K4me3修饰水平出现下降.以上结果表明,Ash2l-1在小鼠卵黄囊的早期造血和血管形成过程中是必不可少的,它可能是通过调控关键基因启动子区的H3K4me3修饰水平而控制这些基因的表达,从而在相关过程中行使功能.  相似文献   

18.
Hyperglycemia/hyperinsulinemia are leading cause for the induction type 2 diabetes and the role of post-translational histone modifications in dysregulating the expression of genes has emerged as potential important contributor in the progression of disease. The paradoxical nature of histone H3-Lysine 4 and Lysine 9 mono-methylation (H3K4me1 and H3K9me1) in both gene activation and repression motivated us to elucidate the functional relationship of these histone modifications in regulating expression of genes under hyperglycaemic/hyperinsulinemic condition. Chromatin immunoprecipitation–microarray analysis (ChIP-chip) was performed with H3 acetylation, H3K4me1 and H3K9me1 antibody. CLUSTER analysis of ChIP-chip (Chromatin immunoprecipitation–microarray analysis) data showed that mRNA expression and H3 acetylation/H3K4me1 levels on genes were inversely correlated with H3K9me1 levels on the transcribed regions, after 30 min of insulin stimulation under hyperglycaemic condition. Interestingly, we provide first evidence regarding regulation of histone de/acetylases and de/methylases; Myst4, Jmjd2b, Aof1 and Set by H3Ac, H3K4me1 and H3K9me1 under hyperinsulinemic/hyperglycaemic condition. ChIP–qPCR analysis shows association of increased H3Ac/H3K4me1 and decreased levels of H3K9me1 in up regulation of Myst4, Jmjd2, Set and Aof1 genes. We further analyse promoter occupancy of histone modifications by ChIP walking and observed increased occupancy of H3Ac/H3K4me1 on promoter region (−1000 to −1) of active genes and H3K9me1 on inactive genes under hyperglycemic/hyperinsulinemic condition. To best of our knowledge this is the first report that shows regulation of chromatin remodelling genes by alteration in the occupancy of histone H3Ac/H3K4/K9me on both promoter and transcribed regions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号