首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methods were developed for the isolation of Chlamydomonas flagella and for their fractionation into membrane, mastigoneme, "matrix," and axoneme components. Each component was studied by electron microscopy and acrylamide gel electrophoresis. Purified membranes retained their tripartite ultrastructure and were shown to contain one high molecular weight protein band on electrophoresis in sodium dodecyl sulfate (SDS)-urea gels. Isolated mastigonemes (hairlike structures which extend laterally from the flagellar membrane in situ) were of uniform size and were constructed of ellipsoidal subunits joined end to end. Electrophoretic analysis of mastigonemes indicated that they contained a single glycoprotein of ~ 170,000 daltons The matrix fraction contained a number of proteins (particularly those of the amorphous material surrounding the microtubules), which became solubilized during membrane removal. Isolated axonemes retained the intact "9 + 2" microtubular structure and could be subfractionated by treatment with heat or detergent. Increasing concentrations of detergent solubilized axonemal microtubules in the following order: one of the two central tubules; the remaining central tubule and the outer wall of the B tubule; the remaining portions of the B tubule; the outer wall of the A tubule; the remainder of the A tubule with the exception of a ribbon of three protofilaments. These three protofilaments appeared to be the "partition" between the lumen of the A and B tubule. Electrophoretic analysis of isolated outer doublets of 9 + 2 flagella of wild-type cells and of "9 + 0" flagella of paralyzed mutants indicated that the outer doublets and central tubules were composed of two microtubule proteins (tubulins 1 and 2) Tubulins 1 and 2 were shown to have apparent molecular weights of 56,000 and 53,000 respectively  相似文献   

2.
Even in the presence of colchicine or Taxol(R), sea urchin embryonic cilia undergo substantial steady-state turnover, with a rate of tubulin incorporation approaching half that seen in full regeneration [Stephens: Mol Biol Cell 8:2187-2198, 1997]. Preliminary experiments suggest that tubulin incorporates differentially into the most stable portion of the outer doublet, the junctional protofilaments [Stephens: Cell Struct Funct 24:413-418, 1999]. To explore this possibility further, embryos of the sea urchin Tripneustes gratilla, a ciliary length inducible system [Stephens: J Exp Zool 269:106-115, 1994a], were pulse labeled with (3)H leucine during steady-state turnover or induced elongation, followed by regeneration in the presence of unlabeled leucine. Cilia were isolated by hypertonic shock and fractionated into detergent-soluble membrane plus matrix, thermally-solubilized microtubule walls, and insoluble 9-fold symmetric remnants of A-B junctional protofilaments plus associated architectural elements. The fractions were resolved by SDS-PAGE and the specific activity of alpha-tubulin was determined. In cilia undergoing turnover or elongation during an isotope pulse, the specific activity of tubulin in the junctional region approximated that of precursor membrane plus matrix tubulin but surpassed that of the tubule wall by a factor of approximately 1.5. In cilia regenerated during an isotope chase, the specific activity of junctional tubulin exceeded that of both the membrane plus matrix and the tubule wall by a similar factor. These data indicate that tubulin is preferentially incorporated into junctional protofilaments during steady-state turnover, induced elongation and regeneration. A model for directional incorporation based on surface lattice discontinuities in the outer doublet is proposed.  相似文献   

3.
The in vitro assembly of flagellar outer doublet tubulin   总被引:17,自引:16,他引:1       下载免费PDF全文
Flagellar outer doublet microtubules were solubilized by use of sonication, and the tubulin was reassembled in vitro into single microtubules containing 14 and 15 protofilaments. The tubulin assembly was dependent on both the KCl and tubulin concentrations, exhibiting a critical concentration of 0.72 mg/ml at optimum solvent conditions. Flagellar tubulin was purified by cycles of temperature-dependent assembly-disassembly and molecular sieve chromatography, and characterized by two-dimensional gel electrophoresis. Although doublet microtubules were not formed in vitro, outer doublet tubulin assembled onto intact A- and B-subfibers of outer doublet microtubules and basal bodies of Chlamydomonas; the rate of assembly from the distal ends of these structures was greater than that from the proximal ends. Microtubule-associated proteins (MAPs) from mammalian brain stimulated outer doublet tubulin assembly, decorating the microtubules with fine filamentous projections.  相似文献   

4.
Proteins occurring minor amounts with purified sperm flagellar doublet microtubules were identified and studied by SDS-gel electrophoresis. Methods were developed to solubilize selectively these minor components; electron microscopy (EM) of the fractionated products revealed possible locations of these proteins in the tubule. Doublet microtubules were prepared from sea-urchin (Echinus esculentus and Stronglyocentrotus droebachiensis) and scallop (Pecten maximus) sperm by dialysing flagellar axonemes against 2 mM Tris-0-2 mM EDTA-0-5 mM DTT. EM indicates that these doublet tubule preparations retain at least 70% of their radial spokes; cross-sections show a globule or fibre applied to the inside wall of the A-tubule, across from the inner B-tubule junction. On SDS-gels these preparations separate into at least 10 minor bands, accounting for 20-30% of the total protein; the remaining 75 +/- 4% migrates as tubulin. For E. esculentus the molecular weights and relative amounts of these components are: Component Ee 8 (150000 Daltons; 1%), 11 (114000; 2-5%), 15 (89000; 2%), 16 (80000; 2-5%), 17 (74000; 2%), 18 (69000; 2%), 19 (66000; 2%), 21 (48000; 4-5%), 22 (45000; 3%) and 23 (44500; 3%). Treatment of sea-urchin tubules with 0-1-0-5% sarkosyl, 0-1-0-3 M KSCN or 0-3-0-6 M KI results in the selective solubilization of: first, component 8 and some B-subfibre tubulin; second, components 11 and 23 and the remaining B-subfire tubulin; third, most of the A-subfire tubulin and components 17, 18 and 19. Thermal fractionation extracts none of these components, suggesting they are principally associated with the A-tubule. Finally 25-35% of the original protein is resistant to solubilization, and appears in the EM as ribbons of 3 protofilaments with 16-nm axial repeats. The resistant ribbons contain components 15, 16, 21 and 22 (plus component 20 in S. droebachiensis) in addition to 25 +/- 4% of the total tubulin. The data support the existence of two stable moieties in each doublet tubule: (1) a ribbon of 3 protofilaments and (2) either a second ribbon of 3 protofilaments or an equivalent amount of tubulin in some other form. EM images suggest that one ribbon forms the lateral side of the A-tubule (e.g. protofilaments A1,2,3 or A13,1,2 in the model) and that the globule applied to A13 may be a multisubunit complex of remaining minor components. Treatment of scallop tubules with 0-3 M KSCN preferentially extracts alpha-tubulin, yielding ribbons 1-4 protofilaments wide. The significance of this finding is discussed.  相似文献   

5.
When tubulins obtained from particular microtubules of the sea urchin (ciliary doublet A tubules, flagellar doublet microtubules, and mitotic microtubules) are analyzed by electrophoresis in a polyacrylamide gel system containing sodium dodecyl sulfate and urea, heterogeneity of the alpha subunit, and differences between the tubulins are revealed. The alpha subunit of tubulin from mitotic apparatus and from A microtubules of ciliary doublets is resolved into two bands, while the alpha subunit of flagellar doublet tubulin gives a single band. The mitotic and ciliary tubulins differ in the mobilities of their two alpha species, or in the relative amounts present, or both. The existence of differences between the tubulins has been confirmed by a preliminary analysis of their cyanogen bromide peptides.  相似文献   

6.
Although the overall structures of flagellar and cytoplasmic microtubules are understood, many details have remained a matter of debate. In particular, studies of the arrangement of tubulin subunits have been hampered by the low contrast of the tubulin subunits. This problem can now be addressed by the kinesin decoration technique. We have shown previously that the recombinant kinesin head domain binds to beta-tubulin, thus enhancing the contrast between alpha- and beta- tubulin in the electron microscope; this allows one to study the arrangement of tubulin dimers. Here we describe the lattices of the four different types of microtubules in eukaryotic flagellar axonemes (outer doublet A and B, central pair C1 and C2). They could all be labeled with kinesin head with an 8-nm axial periodicity (the tubulin dimer repeat), and all of them showed the B-surface lattice. This lattice is characterized by a 0.92-nm stagger between adjacent protofilaments. The B-lattice was observed on the axonemal microtubules as well as on extensions made by polymerizing porcine brain tubulin onto axonemal microtubules in the proximal and distal directions. This emphasizes that axonemal microtubules serve as high fidelity templates for seeding microtubules. The presence of a B-lattice implies that there must be a helical discontinuity ("seam") in the wall. This discontinuity is now placed near protofilaments A1 and A2 of the A- tubule, close to the inner junction between A- and B-microtubules. The two junctions differ in structure: the protofilaments of the inner junction (A1-B10) are staggered roughly by half a dimer, those of the outer junction (A10-B1) are roughly in register. Of the two junctions the inner one appears to have the stronger bonds, whereas the outer one is more labile and opens up easily, generating "composite sheets" with chevron patterns from which the polarity can be deduced (arrow in the plus direction). Decorated microtubules have a clear polarity. We find that all flagellar microtubules have the same polarities. The orientation of the dimers is such that the plus end terminates with a crown of alpha subunits, the minus end terminates with beta subunits which thus could be in contact with gamma-tubulin at the nucleation centers.  相似文献   

7.
Tetrahymena outer doublet tubulin was compared with neurotubulin and Chlamydomonas flagellar tubulin on SDS-polyacrylamide gels. Tetrahymena alpha tubulin did not comigrate with either brain or flagellar alpha tubulins, although brain, flagellar, and ciliary beta tubulins all comigrated. Axonemal tubulin from Tetrahymena strain ST was compared with this tubulin from strains W, S, HSM, and E, and all were found to have the same mobilities. Poly-A containing RNA was separated from whole cell Tetrahymena RNA by oligo-dT cellulose chromatography. Poly-A+ RNA from 24-h cultures (early exponential growth) stimulated greater incorporation of amino acids into polypeptides in the wheat germ cell-free translation system than did poly-A+ RNA from 36-h and 49-h cultures. When separated on SDS-polyacrylamide gels, the translation products of the 24-h poly-A+ RNA had 2 prominent protein bands which comigrated with alpha and beta tubulin isolated from Tetrahymena cilia. These bands were not found in the translation products of poly-A+ RNA isolated from 49-h cultures or in the translation products of poly-A- RNA.  相似文献   

8.
B(alpha beta) tubulin was obtained from a homogeneous class of microtubules, the incomplete B subfiber of sea urchin sperm flagellar doublet microtubules, by thermal fractionation. The thermally derived soluble B tubulin fraction (100, 000 g-h) repolymerizes in vitro, yielding microtubule-like structures. The microtubule-associated protein (MAP) composition and certain assembly parameters of thermally derived B tubulin are different from those reported for sonication- derived flageller tubulin and purified vertebrate tubulin. The "microtubules" reassembled from thermally prepared B tubulin are composed of 12-15 protofilaments (73% possess 14 protofilaments). A certain number possess a single "adlumenal component" applied to their inside walls, regardless of the number of protofilaments. Following the first cycle of polymerization, 81% of the B tubulin and essentially 100% of the MAPs remain cold insoluble. Evidence suggests that B tubulin assembles faithfully into a B lattice, creating a j seam between two protofilaments that are laterally bonded in a A-lattice configuration. The significance of these seams is discussed in relation to the mechanism of microtubule assembly, the stability of observed ribbons of protofilaments, and the three-dimensional organization of microtubule-associated components.  相似文献   

9.
Previous pulse-chase labeling studies have shown that structural proteins incorporate into fully assembled sea urchin embryonic cilia at rates approaching those of full regeneration. When all background ciliogenesis was suppressed by taxol, the turnover of most proteins, including tubulin, continued. The present study utilized chemical dissection to explore the route of tubulin incorporation in the presence of taxol and also in steady-state cilia from prism stage embryos. Surprisingly, in cilia from untreated embryos, the most heavily labeled tubulin was found in the most stable portion of the doublet microtubles, the junctional protofilaments. With taxol, this preferential incorporation was suppressed, although control-level turnover still took place in the remainder of the doublet. This paradoxical result was confirmed by pulse-chase labeling and immediately isolating steady-state cilia, then isolating two additional crops of cilia regenerated, respectively, from pools of high and then decreased label. In each case, the level of label occurring in the tubulin from the junctional protofilaments, compared with that from the remainder of the doublet, correlated with the level of pool label from which it must exchange or assemble. These data indicate that ciliary outer doublet microtubules are dynamic structures and that the junctional region is not inert. Plausible mechanisms of incorporation and turnover of tubulin in fully-assembled, fully-motile cilia can now be assessed with regared to recent discoveries, particularly intraflagellar transport, distal tip incorporation, and treadmilling.  相似文献   

10.
SYNOPSIS. Tetrahymena outer doublet tubulin was compared with neurotubulin and Chlamydomonas flagellar tubulin on SDS-polyacrylamide gels. Tetrahymenaα tubulin did not comigrate with either brain or flagellar α tubulins, although brain, flagellar, and ciliary β tubulins all comigrated. Axonemal tubulin from Tetrahymena strain ST was compared with this tubulin from strains W. S. HSM, and E, and all were found to have the same mobilities. Poly-A containing RNA was separated from whole cell Tetrahymena RNA by oligo-dT cellulose chromatography. Poly-A+ RNA from 24-h cultures (early exponential growth) stimulated greater incorporation of amino acids into polypeptides in the wheat germ cell-free translation system than did poly-A+ RNA from 36-h and 49-h cultures. When separated on SDS-polyacrylamide gels, the translation products of the 24-h poly-A + RNA had 2 prominent protein bands which comigrated with α and β tubulin isolated from Tetrahymena cilia. These bands were not found in the translation products of poly-A+ RNA isolated from 49-h cultures or in the translation products ofpoly-A- RNA.  相似文献   

11.
Upon subjecting isolated outer doublets from S. purpuratus sperm tails to heat and increasing concentrations of detergent Sarkosyl (SLS), the microtubules are partially solubilized. Electron microscopy shows that the B tubule is solubilized at 37 °C or low SLS concentrations; solubilization of tubule A requires higher temperature (60 °C). High concentrations of SLS solubilize parts of the A tubule until only a detergent-resistant fraction composed of three protofilaments is left. Solubilized and unsolubilized fractions contain the same two major protein components (α and β) as do the untreated outer doublets when examined by gel electrophoresis. The ratio of the two components throughout the extraction sequences remains 1:1 ± 0.1 as determined on the basis of dye binding.  相似文献   

12.
The tubulins of Antarctic fishes possess adaptations that favor microtubule formation at low body temperatures (Detrich et al.: Biochemistry 28:10085-10093, 1989). To determine whether some of these adaptations may be present in a domain of tubulin that participates directly or indirectly in lateral contact between microtubule protofilaments, we have examined the energetics of the binding of colchicine, a drug thought to bind to such a site, to pure brain tubulins from an Antarctic fish (Notothenia gibberifrons) and from a mammal (the cow, Bos taurus). At temperatures between 0 and 20 degrees C, the affinity constants for colchicine binding to the fish tubulin were slightly smaller (1.5-2.6-fold) than those for bovine tubulin. van't Hoff analysis showed that the standard enthalpy changes for colchicine binding to the two tubulins were comparable (delta H degrees = +10.6 and +7.4 kcal mol-1 for piscine and bovine tubulins, respectively), as were the standard entropy changes (delta S degrees = +61.3 eu for N. gibberifrons tubulin, +51.2 eu for bovine tubulin). At saturating concentrations of the ligand, the maximal binding stoichiometry for each tubulin was approximately 1 mol colchicine/mol tubulin dimer. The data indicate that the colchicine-binding sites of the two tubulins are similar, but probably not identical, in structure. The apparent absence of major structural modifications at the colchicine site suggests that this region of tubulin is not involved in functional adaptation for low-temperature polymerization. Rather, the colchicine site of tubulin may have been conserved evolutionarily to serve in vivo as a receptor for endogenous molecules (i.e., "colchicine-like" molecules or MAPs) that regulate microtubule assembly.  相似文献   

13.
Arrangement of subunits in microtubules with 14 profilaments   总被引:4,自引:4,他引:0       下载免费PDF全文
The structure of 14-protofilament microtubules reassembled from dogfish shark brain tubulin was analyzed by high resolution electron microscopy and optical diffraction. The simultaneous imaging of the protofilaments from near and far sides of these tubules produces a moire pattern with a period of approximately 96 nm. Optical diffraction patterns show that the 5-nm spots that arise from the protofilaments for the two sides of the tubule are not coincident but lie off the equator by a distance of 1/192 nm-1. These data provide evidence that in reassembled microtubules containing 14 protofilaments, the protofilaments are tilted 1.5 degrees with respect to the long axis of the tubule, giving a left-handed superhelix with a pitch of 2.7 micron. The hypothesis is that the tilt of the protofilaments occurs to accommodate the 14th protofilament. It is determined that when the 14th protofilament is incorporated, the 3-start helix is maintained, but the pitch angle changes from 10.5 degrees to 11.2 degrees, the angle between protofilaments measured from the center of the microtubule changes by 2 degrees, and the dimer lattice is discontinuous. These observations show that the tubulin molecule is sufficiently flexible to accomodate slight distortions at the lateral bonding sites and that the lateral bonding regions of the alpha and beta monomers are sufficiently similar to allow either alpha-alpha and beta-beta subunit pairing or alpha-beta subunit pairing.  相似文献   

14.
Serological similarity of flagellar and mitotic microtubules   总被引:10,自引:5,他引:5       下载免费PDF全文
An antiserum to flagellar axonemes from sperm of Arbacia punctulata contains antibodies which react both with intact flagellar outer fibers and with purified tubulin from the outer fibers. Immunodiffusion tests indicate the presence of similar antigenic determinants on outer-fiber tubulins from sperm flagella of five species of sea urchins and a sand dollar, but not a starfish. The antibodies also react with extracts containing tubulins from different classes of microtubules, including central-pair fibers and both A- and B-subfibers from outer fibers of sperm flagella, an extract from unfertilized eggs, mitotic apparatuses from first cleavage embryos, and cilia from later embryos. Though most tubulins tested share similar antigenic determinants, some clear differences have been detected, even, in Pseudoboletia indiana, between the outer-fiber tubulins of sperm flagella and blastular cilia. Though tubulins are "actin-like" proteins, antitubulin serum does not react with actin from sea urchin lantern muscle. On the basis of these observations, we suggest that various echinoid microtubules are built of similar, but not identical, tubulins.  相似文献   

15.
Strongylocentrotus purpuratus outer doublet microtubules were prepared by extraction of sperm tail axonemes with 0.6 m-KCl. Sonication of the outer doublet microtubules in 5 mm-2-(N-morpholino)ethanesulphonic acid, 1 mm-ethyleneglycol-bis-(β-aminoethyl ether) N,N′-tetraacetic acid, 1 inm-MgSO4 (pH 6.7) solubilized up to 35% of the outer doublet protein, depending on the power input, in a manner which was non-selective for either subfiber. Tubulin comprised 75 to 85% of the total solubilized protein in a 200,000 g supernatant obtained from the sonicated suspension. Colchicine-binding assays demonstrated that the tubulin was largely in a native form (KA = 106, liters mole?; 0.74 mole of colchicine bound per mole of tubulin at infinite concentration of colchicine).Microtubule self-assembly from the 200,000 g supernatants in the absence of added seeds or glycerol was quantitated by light-scattering at 350 nm. The critical protein concentration for assembly was 0.55 mg ml?1 at 37 °C and the reaction occurred optimally in the presence of 2 mm-GTP and 150 mm-KCl. The solubilized outer doublet tubulin formed singlet microtubules upon reassembly under our in vitro conditions. The authenticity of the microtubules was verified by both negative stain and thin-section electron microscopy. Polymerization was prevented by colchicine and podophyllotoxin, and depolymerization occurred rapidly on cooling the microtubules to 0 °C.The susceptibility of the reassembled microtubules to low temperature suggested that they could be “recycled” by the warm assembly-cold disassembly procedure developed for vertebrate brain (Borisy et al., 1974). Twice recycled outer doublet tubulin was devoid of high molecular weight microtubule-associated proteins, as judged by gel electrophoresis in the presence of sodium dodecyl sulfate. However, trace amounts (less than 5%) of intermediate molecular weight material was visible on heavily overloaded gels. The function of this material is uncertain, but it is not chemically equivalent to the tau factor of vertebrate brain (Weingarten et al., 1975), since it cannot be separated from the tubulin by phosphocellulose adsorption. In addition, phosphocellulose-treated tubulin reassembled to the same extent as untreated tubulin, suggesting that the reassembly of outer doublet tubulin does not require the protein equivalents of brain microtubule-associated proteins or tau factor. If accessory proteins are required for the reassembly of outer doublet tubulin, they are not removed by phosphocellulose under the conditions employed, and they must comprise less than 5% of the total protein.  相似文献   

16.
Microtubules play crucial roles in cytokinesis, transport, and motility, and are therefore superb targets for anti-cancer drugs. All tubulins evolved from a common ancestor they share with the distantly related bacterial cell division protein FtsZ, but while eukaryotic tubulins evolved into highly conserved microtubule-forming heterodimers, bacterial FtsZ presumably continued to function as single homopolymeric protofilaments as it does today. Microtubules have not previously been found in bacteria, and we lack insight into their evolution from the tubulin/FtsZ ancestor. Using electron cryomicroscopy, here we show that the tubulin homologs BtubA and BtubB form microtubules in bacteria and suggest these be referred to as "bacterial microtubules" (bMTs). bMTs share important features with their eukaryotic counterparts, such as straight protofilaments and similar protofilament interactions. bMTs are composed of only five protofilaments, however, instead of the 13 typical in eukaryotes. These and other results suggest that rather than being derived from modern eukaryotic tubulin, BtubA and BtubB arose from early tubulin intermediates that formed small microtubules. Since we show that bacterial microtubules can be produced in abundance in vitro without chaperones, they should be useful tools for tubulin research and drug screening.  相似文献   

17.
This study provides a comprehensive, high-resolution structural analysis of the central-pair microtubule apparatus of sperm flagella. It describes the arrangement of several microtubule-associated "sheath" components and suggests, contrary to previous thinking, that microtubules are structurally asymmetric. The two microtubules of the central pair are different in several respects: the C2 tubule bears a single row of 18-nm-long sheath projections with an axial periodicity of 16 nm, whereas the C1 tubule possesses rows of 9-nm globular sheath components with an axial repeat of 32 nm. The lumen of the C2 tubule always appears completely filled with electron-dense material; that of the C1 tubule is frequently hollow. The C2 tubule also possesses a series of beaded chains arranged around the microtubule; the beaded chains are composed of globular subunits 7.5-10 nm in diameter and appear to function in the pairing of the C1 and C2 tubules. These findings indicate: that the beaded chains are not helical, but assume the form of lock washers arranged with a 16-nm axial periodicity on the microtubule; and that the lattice of tubulin dimers in the C2 tubule is not helically symmetric, but that there are seams between certain pairs of protofilaments. Proposed lattice models predict that, because of these seams, central pair and perhaps all singlet microtubules may contain a ribbon of 2-5 protofilaments that are resistant to solubilization; these models are supported by the results of the accompanying paper (R. W. Linck, and G. L. Langevin. 1981. J. Cell Biol. 89: 323-337.  相似文献   

18.
We study microtubular supramolecular architectures of tubulin dimers self-assembling into linear protofilaments, in turn forming a closed tube, which is an important component of the cytoskeleton. We identify the protofilament arrangements with the lowest free energy using molecular dynamics to optimize tubulin conformations. We then use the three-dimensional molecular theory of solvation to obtain the hydration structure of protofilaments built of optimized tubulins and the solvent-mediated effective potential between them. The latter theoretical method, based on first principles of statistical mechanics, is capable of predicting the structure and thermodynamics of solvation of supramolecular architectures. We obtained a set of profiles of the potential of mean force between protofilaments in a periodic two-dimensional sheet in aqueous solution. The profiles were calculated for a number of amino acid sequences, tubulin conformations, and spatial arrangements of protofilaments. The results indicate that the effective interaction between protofilaments in aqueous solution depends little on the isotypes studied; however, it strongly depends on the M loop conformation of beta-tubulin. Based on the analysis of the potential of mean force between adjacent protofilaments, we found the optimal arrangement of protofilaments, which is in good agreement with other studies. We also decomposed the potential of mean force into its energetic and entropic components, and found that both are considerable in the free-energy balance for the stabilized protofilament arrangements.  相似文献   

19.
The testis-specific beta 2 tubulin of Drosophila is required for assembly and function of at least three architecturally different microtubule arrays (Kemphues et al., 1982). Two recessive male-sterile mutations in the B2t locus that encode partially functional, stable, variant forms of beta 2 tubulin cause defects in only certain microtubule-based processes during spermatogenesis. These mutations could thus identify aspects of beta tubulin primary structure critical for function only in specific microtubule arrays. In males carrying the B2t6 mutation, meiotic chromosome segregation and nuclear shaping are normal and flagellar axonemes are formed, but there is a subtle defect in axoneme structure; the outer doublet microtubules fill in with a central core normally seen only in the central pair and accessory microtubules. In homozygous B2t7 males, chromosome movement is usually normal during meiosis but cytokinesis often fails, cytoplasmic microtubules are assembled and nuclear shaping appears to be normal, but the flagellar axoneme lacks structural integrity. In contrast, the B2t8 allele affects a general property of tubulin, the ability to form normal side-to-side association of protofilaments (Fuller et al., 1987), and causes defects in meiosis, axoneme assembly and nuclear shaping. Certain combinations of these beta 2 tubulin mutations show interallelic complementation; in B2t6/B2t8 males functional sperm are produced and both variant subunits are incorporated into mature sperm, in the absence of wild-type beta 2 tubulin. Comparison of the phenotypes of the three partially functional beta 2 tubulin alleles reveals some aspects of tubulin primary structure more important for function in specific subsets of microtubule arrays, and other aspects required for the construction of microtubules in general.  相似文献   

20.
Drosophila melanogaster sperm tubulins are posttranslationally glutamylated and glycylated. We show here that axonemes are the substrate for these tubulin C-terminal modifications. Axoneme architecture is required, but full length, motile axonemes are not necessary. Tubulin glutamylation occurs during or shortly after assembly into the axoneme; only glutamylated tubulins are glycylated. Tubulins in other testis microtubules are not modified. Only a small subset of total Drosophila sperm axoneme tubulins have these modifications. Biochemical fractionation of Drosophila sperm showed that central pair and accessory microtubules have the majority of poly-modified tubulins, whereas doublet microtubules have only small amounts of mono- and oligo-modified tubulins. Glutamylation patterns for different beta-tubulins experimentally assembled into axonemes were consistent with utilization of modification sites corresponding to those identified in other organisms, but surrounding sequence context was also important. We compared tubulin modifications in the 9 + 9 + 2 insect sperm tail axonemes of Drosophila with the canonical 9 + 2 axonemes of sperm of the sea urchin Lytichinus pictus and the 9 + 0 motile sperm axonemes of the eel Anguilla japonica. In contrast to Drosophila sperm, L. pictus sperm have equivalent levels of modified tubulins in both doublet and central pair microtubule fractions, whereas the doublets of A. japonica sperm exhibit little glutamylation but extensive glycylation. Tubulin C-terminal modifications are a prevalent feature of motile axonemes, but there is no conserved pattern for placement or amount of these  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号