首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Highly related insulin response sequences (IRSs) mediate effects of insulin on the expression of multiple genes in the liver, including insulin-like growth factor binding protein-1 (IGFBP-1) and phosphoenolpyruvate carboxykinase (PEPCK). Gel shift studies reveal that oligonucleotide probes containing an IRS from the IGFBP-1 or PEPCK gene form a similar complex with hepatic nuclear proteins. Unlabeled competitors containing the IGFBP-1 or PEPCK IRS or a binding site for C/EBP proteins inhibit the formation of this complex. Antibody against C/EBPbeta (but not other C/EBP proteins) supershifts this complex, and Western blotting of affinity purified proteins confirms that C/EBPbeta is present in this complex. Studies with affinity purified and recombinant protein indicate that C/EBPbeta does not interact directly with the IRS, but that other factors are required. Gel shift assays and reporter gene studies with constructs containing point mutations within the IRS reveal that the ability to interact with factors required for the formation of this complex correlates well with the ability of insulin to regulate promoter activity via this IRS (r = 0.849, p < 0.01). Replacing the IRS in reporter gene constructs with a C/EBP-binding site (but not an HNF-3/forkhead site or cAMP response element) maintains the effect of insulin on promoter activity. Together, these findings indicate that a nucleoprotein complex containing C/EBPbeta interacts with IRSs from the IGFBP-1 and PEPCK genes in a sequence-specific fashion and may contribute to the ability of insulin to regulate gene expression.  相似文献   

3.
4.
5.
6.
Oltipraz, a cancer chemopreventive agent, induces CYP1A1 to a certain extent by transactivation of the gene via the Ah receptor (AhR)-xenobiotic response element (XRE) pathway. Previously, we showed that oltipraz promoted CCAAT/enhancer binding proteinbeta (C/EBPbeta) activation, which leads to the induction of glutathione S-transferase. Given that oltipraz activates C/EBPbeta for gene transactivation and that the putative C/EBP binding site is located in the CYP1A1 promoter region, this study investigated the effect of oltipraz on CYP1A1 induction by 3-methylcholanthrene (3-MC). 3-MC induced CYP1A1 in H4IIE cells in a time- and concentration-dependent manner. Gel shift analysis showed that 3-MC increased the band intensity of protein binding to the XRE. Immunocompetition analysis verified the specificity of AhR-XRE binding. Oltipraz (30 microM) induced CYP1A1 and the CYP1A1 promoter-luciferase gene and increased AhR DNA binding activity, which was 10-20% of those in 3-MC (100 nM)-treated cells. However, AhR-XRE binding was not increased after 10 microM oltipraz treatment. Oltipraz (10 microM) significantly inhibited CYP1A1 and CYP1A1-luciferase gene induction by 3-MC with no increase in AhR DNA binding. Oltipraz enhanced protein binding to the C/EBP binding site in the gene promoter and the binding complex comprised of C/EBPbeta and partly C/EBPdelta. Overexpression of dominant-negative mutant C/EBP significantly abolished the ability of oltipraz to suppress 3-MC-inducible CYP1A1 and the CYP1A1 reporter gene expression. Consistently, C/EBPbeta overexpression blocked CYP1A1 reporter gene induction by 3-MC. These results provide evidence that oltipraz suppresses 3-MC induction of CYP1A1 gene expression and that activation of C/EBPbeta by oltipraz contributes to suppression of 3-MC-inducible AhR-mediated CYP1A1 expression.  相似文献   

7.
8.
9.
The molecular basis for adipose-specific gene expression is not known. To approach the problem of adipocyte gene expression, we have analyzed in detail the capacity of the 5'-flanking region of the adipocyte P2 (aP2) gene to direct cell-type specific gene expression. Although the proximal promoter containing AP-1 and C/EBP binding sites is capable of directing differentiation-dependent gene expression in cultured adipocytes, these constructs are essentially inactive in the tissues of transgenic mice. We found that -5.4 kb of the 5'-flanking region were required to direct heterologous gene (chloramphenicol acetyl transferase; CAT) expression to the adipose tissue of transgenic mice. By deletion analysis, we identified a 520 bp enhancer at -5.4 kb of the aP2 gene. We show that this enhancer can direct high levels of gene expression specifically to the adipose tissue of transgenic mice. This enhancer also functions in a differentiation-dependent manner in cultured adipocytes and cannot be transactivated in preadipocytes by C/EBP. Molecular analysis indicates that several cis- and trans- acting acting elements, though not C/EBP, contribute to the specificity and potency of this enhancer.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
Acetaldehyde was previously shown to activate the alpha1(I) and alpha2(I) collagen promoters and to increase collagen production in activated stellate cells. Also, CCAAT/enhancer binding protein beta (C/EBPbeta) binds and activates the mouse alpha1(I) collagen promoter. This study investigates the role of C/EBPbeta in mediating the activation of the alpha1(I) collagen promoter by acetaldehyde. Nuclear extracts isolated from cultured activated rat hepatic stellate cells formed four protein-DNA complexes on electrophoretic mobility shift assay with an oligonucleotide including the C/EBP binding site between -365 and -335 in the alpha1(I) collagen promoter. The four complexes were identified to represent C/EBPbeta binding to the oligonucleotide by supershift with C/EBPbeta antibody. The principal C/EBP isoform found in the nuclear extracts from stellate cells was C/EBPbeta, with very low amounts of C/EBPalpha detected. Acetaldehyde (200 microM) increased C/EBPbeta protein in stellate nuclear extracts, increased its binding to the promoter, and activated the alpha1(I) collagen promoter in transfected stellate cells. Mutation of the C/EBPbeta binding site markedly decreased nuclear protein binding. A transfected promoter, mutated at the C/EBP binding site, had decreased basal activity, was not activated by acetaldehyde, and was not activated when cotransfected with a C/EBPbeta expression vector. This study shows that C/EBPbeta is the predominant C/EBP isoform found in activated stellate cells and that increased C/EBPbeta protein and C/EBPbeta binding to a proximal C/EBP binding site in the promoter mediates the activating effect of acetaldehyde.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号