首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphoethanolamine N-methyltransferase (PEAMT) is involved in choline biosynthesis in plants. The 5′ untranslated region (UTR) of several PEAMT genes was found to contain an upstream open reading frame (uORF). We generated transgenic Arabidopsis calli that expressed a chimeric gene constructed by fusing the 5′ UTR of the Arabidopsis PEAMT gene (AtNMT1) upstream of the β-glucuronidase gene. The AtNMT1 uORF was found to be involved in declining levels of the chimeric gene mRNA and repression of downstream β-glucuronidase gene translation in the calli when the cells were treated with choline. Further, we discuss the role of the uORF.  相似文献   

2.
3.
4.
5.
6.
The 5' untranslated region (UTR) plays a central role in the regulation of mammalian translation initiation. Key components include RNA structure, upstream AUGs (uAUGs), upstream open reading frames (uORFs), and internal ribosome entry site elements that can interact to modulate the readout. We previously reported the characterization of two alternatively spliced 5' UTR isoforms of the human elk-1 gene. Both contain two uAUGs and a stable RNA stem-loop, but the long form (5' UTR(L)) was more repressive than the short form (5' UTR(S)) for initiation at the ELK-1 AUG. We now demonstrate that ELK-1 expression arises by a combination of leaky scanning and reinitiation, with the latter mediated by the small uORF2 conserved in both spliced isoforms. In HEK293T cells, a considerable fraction of ribosomes scans beyond the ELK-1 AUG in a reinitiation mode. These are sequestered by a series of out-of-frame AUG codons that serve to prevent access to a second in-frame AUG start site used to express short ELK-1 (sELK-1), an N-terminally truncated form of ELK-1 that has been observed only in neuronal cells. We present evidence that all these events are fine-tuned by the nature of the 5' UTR and the activity of the α subunit of eukaryotic initiation factor 2 and provide insights into the neuronal specificity of sELK-1 expression.  相似文献   

7.
8.
9.
In Arabidopsis thaliana, XIPOTL1 encodes a phosphoethanolamine N-methyltransferase with a central role in phosphatidylcholine biosynthesis via the methylation pathway. To gain further insights into the mechanisms that regulate XIPOTL1 expression, the effect of upstream open reading frame 30 (uORF30) on the translation of the major ORF (mORF) in the presence or absence of endogenous choline (Cho) or phosphocholine (PCho) was analysed in Arabidopsis seedlings. Dose-response assays with Cho or PCho revealed that both metabolites at physiological concentrations are able to induce the translational repression of a mORF located downstream of the intact uORF30, without significantly altering its mRNA levels. PCho profiles showed a correlation between increased endogenous PCho levels and translation efficiency of a uORF30-containing mORF, while no correlation was detectable with Cho levels. Enhanced expression of a uORF30-containing mORF and decreased PCho levels were observed in the xipotl1 mutant background relative to wild type, suggesting that PCho is the true mediator of uORF30-driven translational repression. In Arabidopsis, endogenous PCho content increases during plant development and affects root meristem size, cell division, and cell elongation. Because XIPOTL1 is preferentially expressed in Arabidopsis root tips, higher PCho levels are found in roots than shoots, and there is a higher sensitivity of this tissue to translational uORF30-mediated control, it is proposed that root tips are the main site for PCho biosynthesis in Arabidopsis.  相似文献   

10.
11.
12.
13.
The orchid DSCKX1 is a new member of the cytokinin oxidase gene family, which catalyses the degradation of cytokinins bearing unsaturated isoprenoid side chains. A 3.7 kb fragment upstream of the DSCKX1 coding region was isolated, sequenced and characterized by deletion analysis of DSCKX1::beta-glucuronidase gene fusions using transient orchid and stable Arabidopsis transformation systems. Functional analysis of 5' deletions defined the 5'-upstream region that directs the expression in distinct tissues. Regulatory elements affecting the cytokinin induction of the DSCKX1 gene have also been delineated  相似文献   

14.
Wu S  Yu Z  Wang F  Li W  Ye C  Li J  Tang J  Ding J  Zhao J  Wang B 《Molecular biotechnology》2007,36(2):102-112
N-methylation of phosphoethanolamine, the committing step in choline (Cho) biosynthesis in plants, is catalyzed by S-adenosyl-l-methionine: phosphoethanolamine N-methyltransferase (PEAMT, EC 2.1.1.103). Herein we report the cloning and characterization of the novel maize phosphoethanolamine N-methyltransferase gene (ZmPEAMT1) using a combination of bioinformatics and a PCR-based allele mining strategy. The cDNA sequence of ZmPEAMT1 gene is 1,806 bp in length and translates a 495 amino acids peptide. The upstream promoter sequence of ZmPEAMT1 were obtained by TAIL-PCR, and contained four kinds of putative cis-acting regulatory elements, including stress-responsive elements, phytohormone-responsive elements, pollen developmental special activation elements, and light-induced signal transduction elements, as well as several other structural features in common with the promoter of rice and Arabidopsis homologies. RT-PCR analysis showed that expression of ZmPEAMT1 was induced by salt stress and suppressed by high temperature. Over-expression of ZmPEAMT1 enhanced the salt tolerance, root length, and silique number in transgenic Arabidopsis. These data indicated that ZmPEAMT1 maybe involved in maize root development and stress resistance, and maybe having a potential application in maize genetic engineering. Note: Nucleotide sequence data are available in GenBank under the following accession numbers: maize (Zea mays, ZmPEAMT1, AY626156; ZmPEAMT2, AY103779); rice (Oryza sativa, OsPEAMT1/Os01g50030, NM_192178; OsPEAMT2/Os05g47540, XM_475841); wheat (Triticum aestivum, TaPEAMT, AY065971); Arabidopsis (Arabidopsis thaliana, AtNMT1/At3g18000, AY091683; AtNMT2/At1g48600, NM_202264; AtNMT3/At1g73600, NM_106018); oilseed rape (Brassica napus, BnPEAMT, AY319479), tomato (Lycopersicon esculentum, AF328858), spinach (Spinacia oleracea, AF237633).  相似文献   

15.
16.
The plant, Arabidopsis thaliana, contains two S-adenosylmethionine synthetase-encoding genes (sam). Here, we analyze the structure and expression of the sam-2 gene and compare it with the previously described sam-1 gene. Northern-blot analysis using gene-specific probes shows that both sam-1 and sam-2 are highly expressed in stem, root, and callus tissue. This similar expression pattern might be mediated by the presence of three highly conserved sequences in the 5' region of both sam genes. Using a chimeric beta-glucuronidase (GUS)-encoding gene, we show that in transgenic tobacco plants, 748 bp of 5' sam-1 sequences generate high GUS activity in the same type of tissues as previously observed in transgenic A. thaliana plants. A deletion analysis of these 5' sam-1 sequences indicates that 224 bp of 5' sam-1 sequences can still induce higher expression of the gene in stem and root relative to leaf. However, the level of expression is reduced when compared to the expression level obtained with the full-length promoter.  相似文献   

17.
18.
19.
The most important traits of Chinese Liaoning cashmere goat fiber are fiber diameter, weight, and length. We looked for polymorphisms and their possible association with cashmere fiber traits in the 5' upstream region (5' UTR) of the prolactin receptor gene (PRLR), which encodes an anterior pituitary peptide hormone involved in different physiological activities; it is the principal endocrine regulator in pelage replacement in mammals. A novel single-nucleotide polymorphism (SNP) was found in the 5' UTR of PRLR by PCR-RFLP in an analysis of 590 goats. Two genotypes (CC and CT) were observed. The frequencies of allele C and T were 0.93 and 0.07, respectively. Association analysis revealed that the PRLR 5' UTR polymorphism (SNP5) was significantly associated with cashmere fiber weight and diameter. This novel SNP in hircine PRLR has potential as a molecular marker for cashmere fiber weight and diameter in Liaoning cashmere goats.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号