首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the long-range organization and the intrinsic curvature of satellite 1 DNA, an unusual tandemly-repeated DNA family of Xenopus laevis presenting sequence homologies to SINEs. PFGE was used in combination with frequent-cutter restriction enzymes not likely to cut within satellite 1 DNA and revealed that almost all the repeating units are tandemly organized to form large arrays (200 kb to 2 Mb) that are marked by restriction length polymorphism and contain intra-array domains of sequence variation. Besides that, we have analysed the secondary structure of satellite 1 DNA by computer modelling. Theoretical maps of curvature obtained from three independent models of DNA bending (the dinucleotide wedge model of Trifonov, the junction model of Crothers and the model of de Santis) showed that satellite 1 DNA is intrinsically curved and these results were confirmed experimentally by polyacrylamide gel electrophoresis. Moreover, we observed that this bending element is highly conserved among all the members of the satellite 1 DNA family that are accessible to analysis. A potential genetic role for satellite 1 DNA based on this unusual structural feature is discussed.  相似文献   

2.
In this paper, the contribution of different sequence elements to the intrisic curvature of the mouse satellite DNA repeat was investigated. This DNA fragment contains nineteen groups of three or more consecutive adenines which are only poorly phased with respect to the helical repeat. The mouse satellite DNA repeat shows a sinusoidal pattern of cleavage by the hydroxyl radical; the waves of reactivity are phased with respect to the A-tracts. Some interesting observations arise from a detailed analysis of these cleavage patterns: a) the maxima of hydroxyl radical cleavage are more periodically spaced along the DNA sequence than the A-tracts themselves. As a consequence, the position of each maximum with respect to the A-tract is variable; b) the sequence 5' TGGAATATG/AA 3' shows a sinusoidal pattern of hydroxyl radical cleavage. This sequence shows a retarded migration in polyacrylamide gels indicating that it is actually intrinsically curved. These results are discussed in view of the current models for DNA curvature.  相似文献   

3.
Cleavage of sheep DNA with the restriction endonuclease EcoR I yields three discrete size classes (370, 435 and 800bp) of highly repetitive DNA. The 435bp long fragment was cloned and its nucleotide sequence determined. All three classes of repetitive DNA are related to each other as seen by cross-hybridisation. They are tandemly arranged in the genome and in situ hybridisation to sheep lymphocyte chromosomes show their location mainly in the centromere region of all chromosomes. The primary sequence of the repetitive DNA shows a close structural similarity to the bovine 1.715 satellite DNA, however only poor cross-hybridisation between the sheep and cattle repetitive DNA could be shown.  相似文献   

4.
Nuclear DNA isolated from hypocotyls (H), proliferating callus (PC) and differentiating callus (DC) of Brassica juncea contains a satellite DNA which can be resolved in actinomycin-D/CsCl gradients. The satellite DNA undergoes changes, when an in vitro culture is raised from hypocotyl tissue and forms a higher percentage of the genome in PC and DC than in mature differentiated tissue (hypocotyl). All the three satellite DNAs are GC-rich compared to main band DNAs. Satellite DNA of H has higher Tm and GC content than that of the PC and DC satellites. A 200 bp basic repeat unit from hypocotyl nuclear DNA has been cloned and characterised.  相似文献   

5.
We have used the elementary generator matrices outlined in the preceding paper to examine the conformational plasticity of the nucleic acid double helix. Here we investigate kinked DNA structures made up of alternating B- and A-type helices and intrinsically curved duplexes perturbed by the intercalation of ligands. We model the B-to-A transition by the lateral translation of adjacent base pairs, and the intercalation of ligands by the vertical displacement of neighboring residues. We report a complete set of average configuration-dependent parameters, ranging from scalars (i.e., persistence lengths) to first- and second-order tensor parameters (i.e., average second moments of inertia), as well as approximations of the associated spatial distributions of the DNA and their angular correlations. The average structures of short chains (of lengths less than 100 base pairs) with local kinks or intrinsically curved sequences are essentially rigid rods. At the smallest chain lengths (10 base pairs), the kinked and curved chains exhibit similar average properties, although they are structurally perturbed compared to the standard B-DNA duplex. In contrast, at lengths of 200 base pairs, the curved and kinked chains are more compact on average and are located in a different space from the standard B- or A-DNA helix. While A-DNA is shorter and thicker than B-DNA in x-ray models, the long flexible A-DNA helix is thinner and more extended on average than its B-DNA counterpart because of more limited fluctuations in local structure. Curved polymers of 50 base pairs or longer also show significantly greater asymmetry than other DNAs (in terms of the distribution of base pairs with respect to the center of gravity of the chain). The intercalation of drugs in the curved DNA straightens and extends the smoothly deformed template. The dimensions of the average ellipsoidal boundaries defining the configurations of the intercalated polymers are roughly double those of the intrinsically curved chain. The altered proportions and orientations of these density functions reflect the changing shape and flexibility of the double helix. The calculations shed new light on the possible structural role of short A-DNA fragments in long B-type duplexes and also offer a model for understanding how GC-specific intercalative ligands can straighten naturally curved DNA. The mechanism is not immediately obvious from current models of DNA curvature, which attribute the bending of the chain to a perturbed structure in repeating tracts of A · T base pairs. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
S Kumar  M Bansal 《Biophysical journal》1996,71(3):1574-1586
Elucidation of the detailed structural features and sequence requirements for alpha helices of various lengths could be very important in understanding secondary structure formation in proteins and, hence, in the protein folding mechanism. An algorithm to characterize the geometry of an alpha helix from its C(alpha) coordinates has been developed and used to analyze the structures of long alpha helices (number of residues > or = 25) found in globular proteins, the crystal structure coordinates of which are available from the Brookhaven Protein Data Bank. All long alpha helices can be unambiguously characterized as belonging to one of three classes: linear, curved, or kinked, with a majority being curved. Analysis of the sequences of these helices reveals that the long alpha helices have unique sequence characteristics that distinguish them from the short alpha helices in globular proteins. The distribution and statistical propensities of individual amino acids to occur in long alpha helices are different from those found in short alpha helices, with amino acids having longer side chains and/or having a greater number of functional groups occurring more frequently in these helices. The sequences of the long alpha helices can be correlated with their gross structural features, i.e., whether they are curved, linear, or kinked, and in case of the curved helices, with their curvature.  相似文献   

7.
Intrinsic DNA curvature is speculated to be a common feature of all satellite DNA sequences and may aid in the tight winding of DNA in constitutive heterochromatin. Several satellite DNAs, however, show unusually rapid migration in non-denaturing polyacrylamide gels, which is just the opposite behavior of that shown by curved DNA structures. Employing bovine satellite I DNA monomer, we attempted to understand the molecular mechanism of 'rapid migration'. The phenomenon of rapid migration was temperature-dependent and to a small extent polyacrylamide-concentration-dependent. Physiological or near-physiological concentrations of Mg2+and Ca2+ions bent the rapid migrating DNA segment. Predominance of purine-purine base stacking over purine-pyrimidine in nucleotide sequence was strongly indicated to be the cause of the rapid migration. Furthermore, they seemed to be implicated in the formation of induced DNA bend. We also found that the satellite I monomer contains an intrinsic DNA curvature as do many other satellites. Heretofore, the rapid migration property has concealed the presence of curvature.  相似文献   

8.
T G Fanning 《Gene》1989,85(2):559-563
The major centromeric satellite nt sequences present in the domestic dog (Canis familiaris) and in the grey fox (Urocyon cineroargenteus) have been examined. The dog satellite monomer is 737 bp long and contains 51% G + C; the grey fox satellite monomer is 880 b long and contains 54% G + C. The two satellites share three regions of 78, 92 and 314 bp with 70-80% sequence similarity. Sequence data from 16 monomers of dog satellite and 19 monomers of grey fox satellite demonstrate that the substitution spectra are different in the two canid species. For example, substitutions involving G or C residues are much more common in the grey fox satellite than in the domestic dog satellite despite their similar G + C contents.  相似文献   

9.
The glucocorticoid receptor (GR) DNA binding domain consists of several conserved amino acids and folds into two zinc finger-like structures. Previous transactivation experiments indicated that three amino acids residing in this region, Gly, Ser and Val, appear to be critical for target-site discrimination. Based on the solved crystal structure, these residues are at the beginning of an amphipathic alpha-helix that interacts with the DNA's major groove; of these, only valine, however, contacts DNA. In order to examine their functional role directly, we have substituted these residues for the corresponding amino acids from the estrogen receptor (ER), overexpressed and purified the mutant proteins, and assayed their binding specificity and affinity by gel mobility shifts using glucocorticoid or estrogen response elements (GRE or ERE, respectively) as DNA probes. We find that all three residues are indeed required to fully switch GR's specificity to an ERE. The contacting valine in GR is of primary importance. The corresponding residue in ER, alanine, is less important for specificity, while glutamic acid, four amino acids towards the N-terminus, is most critical for ER discrimination. Finally, we show that the GR DNA binding domain carrying all three ER-specific mutations has a significantly higher affinity for an ERE than the ER DNA binding domain itself. We interpret these results in the context of both the data presented here and the crystal structure of the GR DNA binding domain complexed to a GRE.  相似文献   

10.
11.
Genomic DNA of calf thymus contains 1.5 times as much 5-methylcytosine as similar sperm DNA, but the major EcoRI repeat fragment from satellite I of thymus contains ten times as much 5-methylcytosine as the corresponding fragment from sperm DNA. Restriction enzyme analyses of the total DNA and the satellite I fragment show that three HpaII sites in the fragment are completely unmethylated in sperm but fully methylated in thymus DNA. Under-methylation of many sites in the satellite DNAs can probably account for the lower level of methylation of sperm DNA rather than hemimethylation as previously suggested. These results are also discussed in relation to maintenance and de novo (initiation-type) methylases.  相似文献   

12.
C. S. Lee 《Chromosoma》1978,65(2):103-114
Chromatin structure can be probed by cross-linking DNA in situ using trioxsalen and irradiation with UV light. Presumably DNA within a nucleosome is protected from cross-linking so that this region appears as a single-strand loop in the electron microscope under a condition in which single-strands and double-strands are distinguished. Unprotected regions appear as duplex due to cross-linking.We have used this approach to investigate the structure of chromatins containing satellite DNAs of Drosophila nasutoides. We have previously shown that D. nasutoides has an unusually large autosome pair which is almost entirely heterochromatic. Its nuclear DNA reveals four major satellite components amounting up to 60% of the total genome. All of them are localized in this large heterochromatic chromosome. We wish to ask whether chromatins containing different satellite sequences have different arrangements of nucleosomes. Our results from cross-linking experiments show that all DNA components including main band DNA have different patterns of protected and unprotected regions: (a) The length distributions of protected regions show multiple peaks with the smallest unit lengths being 200 nucleotides for main band DNA, 180 for satellites I, II and III, and 160 for satellite IV. (b) The amounts of unprotected regions, presumably internucleosome DNA, vary from 16% for main band DNA to 60% for satellite IV, suggesting that satellite chromatins have fewer nucleosomes per given length of chromatin than main band DNA chromatin. The spacings between nucleosomes appear to be random in satellite chromatins.  相似文献   

13.
Satellite III DNA has been located by in situ hybridization in chromosomes 1, 3--5, 7, 9, 10, 13--18, 20--22, and Y and ribosomal DNA (rDNA) in the acrocentric chromosomes 13--15, 21, and 22. In the acrocentric chromosomes, the satellite DNA is located in the short arm. Here we report comparisons by in situ hybridization of the amount of satellite DNA in Robertsonian translocation and "normal variant" chromosomes with that in their homologs. In almost all dicentric Robertsonian translocations, the amount of satellite DNA is less than that in the normal homologs, but it is rarely completely absent, indicating that satellite DNA is located between the centromere and the nucleolus organizer region (NOR) and that the breakpoints are within the satellite DNA. The amount of satellite DNA shows a range of variation in "normal" chromosomes, and this is still more extreme in "normal variant" chromosomes, those with large short arm (p+ or ph+) generally having more satellite DNA than those with small short arms (p- or ph-). The cytological satellites are heterogeneous in DNA content; some contain satellite DNA, others apparently do not, and the satellite DNA content is not related to the size or intensity of fluorescence of the satellites. The significance of these variations for the putative functions of satellite DNA is discussed.  相似文献   

14.
Very abundant and homogenous satellite DNA has been found in the flour beetle Palorus ratzeburgii, representing 40% of its genome. Sequencing of 14 randomly cloned satellite monomers revealed a conserved monomer length of 142 bp and an average A+T content of 68%. Sequence variation analysis showed that base substitutions, appearing with a frequency of 2.3%, are predominant differences among satellite monomers. The satellite sequence is unique without significant direct repeats and with only two potentially stable inverted repeats. After electrophoresis of satellite monomers on native polyacrylamide gel retarded mobilities characteristic for curved DNA molecules are observed. The curvature profiles and DNA helix axis trajectory are calculated on the basis of three different algorithms. These calculations predict that P ratzeburgii satellite DNA forms a left-handed solenoid superstructure. Comparison of described features with other satellite DNAs reveals some striking similarities with satellite DNA from related species Tenebrio molitor, which belongs to the same family of Tenebrionidae. Both satellites are very abundant and homogenous with the same, highly conserved monomer length, although there is no homology at the nucleotide level. Their monomers, as well as multimers, exhibit very similar retarded electrophoretic mobilities. The calculated curvature profiles predict two bend centers in monomers of each satellite, resulting in a model of left-handed solenoid superstructures of similar appearance.  相似文献   

15.
The satellite II DNAs of the domestic ox Bos taurus and sheep Ovis aries have been sequenced, and that of the domestic goat Capra hircus partially sequenced. All three are related, and consist of repeat units of about 700 base-pairs. There is no evidence of internal repetition within these repeat units. When matched for maximum homology, the goat and sheep sequences show 83% homology, whereas the ox and sheep sequences share only 70% homology. Factors contributing to the uncertainty of the exact homology between these sequences are discussed, but the results are nevertheless consistent with their progenitor sequence being present in the common ancestor of cattle and sheep. Goat satellite II DNA is shown to contain another, unrelated, tandemly repeated sequence, which is composed of 22 base-pair repeat units. Both this sequence and a region of ox satellite II share good homology with the 11 base-pair progenitor sequence of ox 1.706 g/cm3 satellite DNA. It is suggested that this shared sequence could play a role in bovine satellite DNA amplification.  相似文献   

16.
17.
Very abundant and homogenous satellite DNA has been found in the flour beetle Palorus ratzeburgii, representing 40% of its genome. Sequencing of 14 randomly cloned satelite monomers revealed a conserved monomer length of 142 bp and an average A+T content of 68%. Sequence variation analysis showed that base substitutions, appearing with a frequency of 2.3%, are predominant differences among satellite monomers. The satellite sequence is unique without significant direct repeats and with only two potentially stable inverted repeats. After electrophoresis of satellite monomers on native polyacrylamide gel retarded mobilities characteristic for curved DNA molecules are observed. The curvature profiles and DNA helix axis trajectory are calculated on the basis of three different algorithms. These calculations predict that P ratzeburgii satellite DNA forms a left-handed solenoid superstructure. Comparison of described features with other satellite DNAs reveals some striking similarities with satellite DNA from related species Tenebrio molitor, which belongs to the same family of Tenebrionidae. Both satellites are very abundant and homogenous with the same, highly conserved monomer length, although there is no homology at the nucleotide level. Their monomers, as well as multimers, exhibit very similar retarded electrophoretic mobilities. The calculated curvature profiles predict two bend centers in monomers of each satellite, resulting in a model of left-handed solenoid superstructures of similar appearance.  相似文献   

18.
Cevec M  Plavec J 《Biochemistry》2005,44(46):15238-15246
Formation of guanine-quadruplexes by four DNA oligonucleotides with common sequence dG4-loop-dG4 has been studied by a combination of NMR and UV spectroscopy. The loops consisted of 1',2'-dideoxyribose, propanediol, hexaethylene glycol, and thymine residues. The comparison of data on modified and parent oligonucleotides gave insight into the role of loop residues on formation and stability of dimeric G-quadruplexes. All modified oligonucleotides fold into dimeric fold-back G-quadruplexes in the presence of sodium ions. Multiple structures form in the presence of potassium and ammonium ions, which is in contrast to the parent oligonucleotide with dT4 loop. 15N-filtered 1H NMR spectra demonstrate that all studied G-quadruplexes exhibit three 15NH4(+) ion binding sites. Topology of intermolecular G-quadruplexes was evaluated by NMR measurements and diffusion experiments. The spherical, prolate-ellipsoid and symmetric cylinder models were used to interpret experimental translational diffusion constants in terms of diameters and lengths of unfolded oligonucleotides and their respective G-quadruplexes. UV melting and annealing curves show that oligonucleotides with non-nucleosidic loop residues fold faster, exhibit no hysteresis, and are less stable than dimeric d(G4T4G4)2 which can be attributed to the absence of H-bonds, stacking between loop residues and the outer G-quartets as well as cation-pi interactions. Oligonucleotide consisting of hexaethylene glycol linkage with only two phosphate groups in the loop exhibits higher melting temperature and more negative deltaH(o) and deltaG(o) values than oligonucleotides with four 1',2'-dideoxyribose or propanediol residues.  相似文献   

19.
D A Dean  P P Li  L M Lee    H Kasamatsu 《Journal of virology》1995,69(2):1115-1121
Both a DNA-binding domain and a Vp1 interactive determinant have been mapped to the carboxy-terminal 40 residues of the simian virus 40 (SV40) minor capsid proteins, Vp2 and Vp3 (Vp2/3), with the last 13 residues being necessary for these activities. The role of this DNA-binding domain in SV40 morphogenesis and the ability to separate these two signals were investigated by mutagenesis and assessment of the activity and viability of the mutants. The carboxy-terminal 40 residues of Vp2/3 were expressed as a polyhistidine fusion protein, and five basic residues at the extreme carboxy terminus (Vp3 residues K226, R227, R228, R230, and R233) were mutagenized. The wild-type fusion protein bound DNA with a Kd of 3 x 10(-8) identical to that of the full-length Vp3. Mutant proteins containing either one to three or four amino acid substitutions bound DNA 4- to 7-fold or 20- to 30-fold less well, respectively, than the wild-type protein did. The most severe point mutants showed residual DNA binding similar to that of a truncated protein which lacks the entire 13 carboxy-terminal residues. All of the point mutants were able to interact with Vp1, indicating that the two signals within this region are mediated by different residues. When the mutations were placed into the context of the viral DNA and introduced into cells, all the structural proteins were expressed and localized correctly. Not all, however, were viable: mutant genomes whose Vp2/3 bound DNA with intermediate affinities formed plaques just as well as wild-type SV40 DNA did, but three mutants showing greatly reduced DNA binding failed to form plaques at all. These results are consistent with the hypothesis that Vp2/3 plays an essential role in SV40 virion assembly in the nucleus.  相似文献   

20.
The two overlapping promoters that control mRNA synthesis at the galactose operon contain three phased stretches of adenine residues, located around positions -84.5, -74 and -63, with respect ot the start of the P1 promoter. As a result, the corresponding DNA sequence is bent, an anomaly that is relieved by the addition of small concentrations of drugs like distamycin A or netropsin. By abortive initiation assays performed on several DNA fragments derived from the wild-type promoter or from various mutants we show that the curved sequence increases the strength of the P1 promoter. In the absence of cyclic AMP (cAMP) and of the corresponding receptor protein (CRP), the upstream curved sequences enhance the rate of isomerization from the closed to the open complex at P1. This effect is abolished when distamycin A is bound in the bent region. In the presence of cAMP-CRP, a more drastic change is observed: activation of the gal P1 promoter takes place at a different formal step, depending whether the upstream curved sequence is present or not (enhancement of the rate of conversion from a closed to an open complex instead of an increase in the affinity of the enzyme during closed complex formation). These data, together with previous results obtained with other mutants of the gal control region, suggest that several closed complexes corresponding to different nucleoprotein arrangements are formed during open complex formation at gal P1, in the presence of CRP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号