首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three amperometric enzyme electrodes have been constructed by adsorbing anionic royal palm tree peroxidase (RPTP), anionic sweet potato peroxidase (SPP), or cationic horseradish peroxidase (HRP-C) on spectroscopic graphite electrodes. The resulting H(2)O(2)-sensitive biosensors were characterized both in a flow injection system and in batch mode to evaluate their main bioelectrochemical parameters, such as pH dependency, I(max), K(M)(app), detection limit, linear range, operational and storage stability. The obtained results showed a distinctly different behavior for the plant peroxidase electrodes, demonstrating uniquely superior characteristics of the RPTP-based sensors. The broader linear range observed for the RPTP-based biosensor is explained by a high stability of this enzyme in presence of H(2)O(2). The higher storage and operational stability of RPTP-based biosensor as well as its capability to measure hydrogen peroxide under acidic conditions connect with an extremely high thermal and pH-stability of RPTP.  相似文献   

2.
Yang Z  Ren Y  Zhang Y  Li J  Li H  Hu XH  Xu Q 《Biosensors & bioelectronics》2011,26(11):4337-4341
A novel biosensor is developed based on immobilization of proteins on nanoflake-like SnS? modified glass carbon electrode (GCE). With glucose oxidase (GOD) as a model, direct electrochemistry of the GOD/nanoflake-like SnS? is studied. The prepared SnS? has large surface area and can offer favorable microenvironment for facilitating the electron transfer between protein and electrode surface. The properties of GOD/SnS? are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR) and cyclic voltammetry (CV), respectively. The immobilized enzyme on nanoflake-like SnS? retains its native structure and bioactivity and exhibits a surface-controlled, reversible two-proton and two-electron transfer reaction with the apparent electron transfer rate constant (k(s)) of 3.68 s?1. The proposed biosensor shows fast amperometric response (8s) to glucose with a wide linear range from 2.5 × 10?? M to 1.1 × 10?3 M, a low detection limit of 1.0 × 10?? M at signal-to-noise of 3 and good sensitivity (7.6 ± 0.5 mA M?1 cm?2). The resulting biosensor has acceptable operational stability, good reproducibility and excellent selectivity and can be successfully applied in the reagentless glucose sensing at -0.45 V. It should be worthwhile noting that it opens a new avenue for fabricating excellent electrochemical biosensor.  相似文献   

3.
A novel sensing layer design is presented based on the non-covalent immobilisation of enzymes on derivatized Sepharose beads subsequently entrapped in PVA-SbQ photopolymer. Two different modified Sepharose beads were used, IDA- and DEAE-Sepharose, for the immobilisation, respectively, of horseradish peroxidase (HRP) modified with histidine, and choline oxidase (Chx). The HRP-IDA-Sepharose-based sensing layer was used in a flow injection analysis chemiluminescent system as the basis of an H2O2 biosensor. It was shown that the pre-immobilisation on IDA-Sepharose beads enhanced the sensing layer stability and enabled the immobilisation of a larger amount of enzyme. A 1.8 mg charge of HRP-IDA-Sepharose beads in the sensing layer produced the most sensitive H2O2 biosensor. Such an analytical system exhibited very good performances, with a cycle time of 2 min and a detection limit of 15 pmol (detection ranging over four decades at least), and an unusual long operational stability of 200 measurements (CV, 3.5%). The HRP-IDA-Sepharose beads were then combined with Chx-DEAE-Sepharose. With this modified Sepharose-based biosensor the limit of detection for choline (S/N, 3) was equal to 0.5 pmol and the working range was 0.35 pmol-10 nmol. Moreover, the cycle time was only 2.5 min with the new sensing layer, and a long operational stability of 150 successive assays was found, with a variation coefficient of 2.6%.  相似文献   

4.
Application of a biosensor for monitoring of ethanol   总被引:4,自引:0,他引:4  
An alcohol biosensor for the measurement of ethanol has been developed. It comprises an alcohol oxidase/chitosan immobilized eggshell membrane and a commercial oxygen sensor. Ethanol determination is based on the depletion of dissolved oxygen content upon exposure to ethanol solution. The decrease in oxygen level was monitored and related to the ethanol concentration. The biosensor response depends linearly on ethanol concentration between 60 microM and 0.80 mM with a detection limit of 30 microM (S/N=3) and 1 min response time. In the optimization studies of the enzyme biosensor the most suitable enzyme and chitosan amounts were found to be 1.0 mg and 0.30% (w/v), respectively. The phosphate buffer (pH 7.4, 25 mM) and room temperature (20-25 degrees C) were chosen as the optimum working conditions. In the characterization studies of the ethanol biosensor some parameters such as interference effects, operational and storage stability were studied in detail. The biosensor was also tested with various wine samples. The results of this newly developed biosensor were comparable to the results obtained by a gas chromatographic method.  相似文献   

5.
Xian Y  Hu Y  Liu F  Xian Y  Wang H  Jin L 《Biosensors & bioelectronics》2006,21(10):1996-2000
In this paper, we report a novel glucose biosensor based on composite of Au nanoparticles (NPs)-conductive polyaniline (PANI) nanofibers. Immobilized with glucose oxidase (GOx) and Nafion on the surface of nanocomposite, a sensitive and selective biosensor for glucose was successfully developed by electrochemical oxidation of H2O2. The glucose biosensor shows a linear calibration curve over the range from 1.0x10(-6) to 8.0x10(-4) mol/L, with a slope and detection limit (S/N=3) of 2.3 mA/M and 5.0x10(-7) M, respectively. In addition, the glucose biosensor system indicates excellent reproducibility (less than 5% R.S.D.) and good operational stability (over 2 weeks).  相似文献   

6.
With the incorporation of lysozyme during the immobilization step, considerable enhancement of the operational stability of a biosensor has been demonstrated in the case of an immobilized single enzyme (glucose oxidase) system for glucose and multienzyme (invertase, mutarotase and glucose oxidase) system for sucrose. Thus an increased number of repeated analyses of 750 samples during 230 days for glucose and 400 samples during 40 days of operation for sucrose have been achieved. The increased operational stability of immobilized single and multienzyme system, will improve the operating cost effectiveness of the biosensor.  相似文献   

7.
In this work we report the development of a highly sensitive fluorescent multienzymatic biosensor for quantitative xanthine detection. This biosensor is built by the simultaneous encapsulation of three enzymes, xanthine oxidase, superoxide dismutase and peroxidase, in a single sol-gel matrix coupled to the Amplex Red probe. The sol-gel chemistry yields a porous, optically transparent matrix that retains the natural conformation and the reactivity of the three co-immobilized proteins. Xanthine determination is based on a sequence of reactions, namely catalytic oxidation of xanthine to uric acid and superoxide radical, and subsequent catalytic dismutation of the radical, resulting in the formation of hydrogen peroxide, which reacts stoichiometrically with non-fluorescent Amplex Red to produce highly fluorescent resorufin. The optimal operational conditions for the biosensor were investigated. Linearity was observed for xanthine concentrations up to 3.5 microM, with a detection limit of 20 nM, which largely improved the sensitivity of the current xanthine biosensors. The developed biosensor is reusable and remains stable for 2 weeks under adequate storage conditions.  相似文献   

8.
An amperometric l-lactate biosensor was fabricated by confining lactate oxidase in a Prussian Blue-modified electrode with a Nafion membrane. The detector was assembled in a flow injection apparatus and operated at -0.1 V. Conditions for optimal electrode response were determined by investigating the influence of the amount of immobilized enzyme, the sample volume, and the flow rate. At the established operational conditions, the biosensor exhibited negligible response from interfering species usually present in biological fluids. The stability of the biosensor was also investigated, and its sensitivity was maintained unchanged at certain experimental conditions. l-Lactate was determined in blood samples, and the influence of physical exercise on the results was clearly evidenced, demonstrating that the proposed amperometric detector is suitable for monitoring changes in the l-lactate levels in biological fluids.  相似文献   

9.
A simple and relatively cheap glucose biosensor based on a combination of gold nanoparticles (Au NPs) and glucose oxidase (GO(x) ) immobilized on a bioplatform eggshell membrane was established. Scanning electron microscopy showed successful immobilization of Au NPs/GO(x) on the eggshell membrane. The effects of pH, phosphate buffer concentration, and temperature on the glucose biosensor were studied in detail. The biosensor shows a linear response at a glucose concentration range of 5-525 μM. The detection limit of the biosensor is 2.5 μM (S/N = 3). The biosensor exhibits good repeatability with RSD = 3.6% (n = 6), good operational stability with over 300 measurements and long-term storage stability with a shelf life of at least 6 months. The response time is less than 60 s. The glucose level in commercial food samples has been successfully determined. The proposed work shows potential to develop cost-effective biosensors for biotechnological, biomedical and industrial use.  相似文献   

10.
A glucose biosensor using a glucose oxidase (GOx)-immobilized nylon net with glutaraldehyde as cross-linking reagent and an oxygen (O2) electrode for the determination of glucose has been fabricated. The detection scheme was based on the utilization of dissolved O2 in oxidation of glucose by the membrane bound GOx. Crucial factors including O-alkylation temperature, reaction times of nylon net with dimethyl sulfate, l-lysine, and glutaraldehyde, and enzyme loading were examined to determine the optimal enzyme immobilization conditions for the best sensitivity of the developed glucose biosensor. In addition, the effects of pH and concentration of phosphate buffer on the response of the biosensor were studied. The glucose biosensor had a linear range of 18 μM to 1.10 mM with the detection limit of 9.0 μM (S/N = 3) and response time of 80 s. The biosensor exhibited both good operational stability with over 200 measurements and long-term storage stability. The results from this biosensor compared well with those of a commercial glucose assay kit in analyzing human serum glucose samples.  相似文献   

11.
Calcium carbonate nanoparticles (nano-CaCO3) may be a promising material for enzyme immobilization owing to their high biocompatibility, large specific surface area and their aggregation properties. This attractive material was exploited for the mild immobilization of glucose oxidase (GOD) in order to develop glucose amperometric biosensor. The GOD/nano-CaCO3-based sensor exhibited a marked improvement in thermal stability compared to other glucose biosensors based on inorganic host matrixes. Amperometric detection of glucose was evaluated by holding the modified electrode at 0.60 V (versus SCE) in order to oxidize the hydrogen peroxide generated by the enzymatic reaction. The biosensor exhibited a rapid response (6s), a low detection limit (0.1 microM), a wide linear range of 0.001-12 mM, a high sensitivity (58.1 mAcm-2M-1), as well as a good operational and storage stability. In addition, optimization of the biosensor construction, the effects of the applied potential as well as common interfering compounds on the amperometric response of the sensor were investigated and discussed herein.  相似文献   

12.
Xue H  Shen Z  Li C 《Biosensors & bioelectronics》2005,20(11):2330-2334
A new type of in situ electropolymerization method was used for electrochemical biosensor design. The biologic film was prepared by in situ electropolymerization of aniline into microporous polyacrylonitrile-coated platinum electrode in the presence of glucose oxidase. The novel glucose biosensor exhibited good selectivity, sensitivity and stability, which showed no apparent loss of activity after 100 consecutive measurements and intermittent usage for 100 days with storage in a phosphate buffer at 4 degrees C. Blood glucose determinations agreed well with standard hospital laboratory analysis. The construction and operational parameters of the biosensor were also optimized.  相似文献   

13.
A tetragonal pyramid-shaped porous ZnO (TPSP-ZnO) nanostructure is used for the immobilization, direct electrochemistry and biosensing of proteins. The prepared ZnO has a large surface area and good biocompatibility. Using glucose oxidase (GOD) as a model, this shaped ZnO is tested for immobilization of proteins and the construction of electrochemical biosensors with good electrochemical performances. The interaction between GOD and TPSP-ZnO is examined by using AFM, N(2) adsorption isotherms and electrochemical methods. The immobilized GOD at a TPSP-ZnO-modified glassy carbon electrode shows a good direct electrochemical behavior, which depends on the properties of the TPSP-ZnO. Based on a decrease of the electrocatalytic response of the reduced form of GOD to dissolved oxygen, the proposed biosensor exhibits a linear response to glucose concentrations ranging from 0.05 to 8.2mM with a detection limit of 0.01mM at an applied potential of -0.50V which has better biosensing properties than those from other morphological ZnO nanoparticles. The biosensor shows good stability, reproducibility, low interferences and can diagnose diabetes very fast and sensitively. Such the TPSP-ZnO nanostructure provides a good matrix for protein immobilization and biosensor preparation.  相似文献   

14.
A galactose biosensor is obtained by immobilizing galactose oxidase (GAO) in a microporous polyacrylonitrile (PAN) thin film. The effects of pH, potential and temperature on response current are studied. The optimum pH and apparent activation energy of enzyme-catalyzed reaction are 7.1 and 31.1 kJ mol-1, respectively. The response current of the biosensor increases linearly with the increasing galactose concentration from 0.02 to 1.60 mmol dm-3. The Michaelis-Menten constant value (K m app) is 12.15 mmol dm-3. The biosensor shows good operational stability and reproducibility. The galactose biosensor is characterized with cyclic voltammogram, FTIR and UV-Vis.  相似文献   

15.
Ai H  Huang X  Zhu Z  Liu J  Chi Q  Li Y  Li Z  Ji X 《Biosensors & bioelectronics》2008,24(4):1054-1058
A novel cheap and simple amperometric glucose biosensor, based on the electrode modified with the Ni/Al layered double hydroxide (LDH) nanoflakes and chitosan (CHT), without glucose oxidase, is presented. The glucose biosensor based on monodispersed high active Ni/Al-LDH nanoflakes and CHT exhibits an appropriate linear range of 0.01-10mM and good operational stability. The amperometric sensor shows a rapid response at the potential value 0.48V. In addition, optimization of the biosensor construction, the effects of the applied potential, the scan rate as well as common interfering compounds on the amperometric response and human serum samples analysis of the sensor were investigated and discussed.  相似文献   

16.
A thick-film phosphate biosensor based on hydrogel immobilized pyruvate oxidase (POD) has been developed for rapid phosphate process control monitoring in an experimental sequencing batch reactor (SBR) system. We have employed a phosphate biosensor in an off-line monitoring of phosphate concentrations in a bench scale SBR. Measurements with biosensor show a good correlation (r2=0.98) with those of commercial colorimetric phosphate testing kits. The signal response time was 1 min with a detection limit of 5 microM. The biosensor method showed a good operational stability, needed less experimental procedures and a small sample size (approximately 20 microl). This allows its practical application for rapid phosphate measurements to obtain real time process data in a SBR system.  相似文献   

17.
In this article, we describe a third-generation amperometric glucose biosensor working under physiological conditions. This glucose biosensor consists of a recently discovered cellobiose dehydrogenase from the ascomycete Corynascus thermophilus (CtCDH) immobilized on different commercially available screen-printed electrodes made of carbon (SPCEs), carboxyl-functionalized single-walled carbon nanotubes (SPCE-SWCNTs), or multiwalled carbon nanotubes (SPCE-MWCNTs) by simple physical adsorption or a combination of adsorption followed by cross-linking using poly(ethyleneglycol) (400) diglycidyl ether (PEGDGE) or glutaraldehyde (GA). The CtCDH-based third-generation glucose biosensor has a linear range between 0.025 and 30 mM and a detection limit of 10 μM glucose. Biosensors based on SWCNTs showed a higher sensitivity and catalytic response than the ones functionalized with MWCNTs and the SPCEs. A drastic increase in response was observed for all three electrodes when the adsorbed enzyme was cross-linked with PEGDGE or GA. The operational stability of the biosensor was tested for 7 h by repeated injections of 50 mM glucose, and only a slight decrease in the electrochemical response was found. The selectivity of the CtCDH-based biosensor was tested on other potentially interfering carbohydrates such as mannose, galactose, sucrose, and fucose that might be present in blood. No significant analytical response from any of these compounds was observed.  相似文献   

18.
The amperometric biosensor for ethanol determination based on alcohol oxidase immobilised by the method of electrochemical polymerization has been developed. The industrial screen-printed platinum electrodes were used as transducers for creation of amperometric alcohol biosensor. Optimal conditions for electrochemical deposition of an active membrane with alcohol oxidase has been determined. Biosensors are characterised by good reproducibility and operational stability with minimal detection limit of ethanol 8 x 10(-5) M. The good correlation of results for ethanol detection in wine and during wine fermentation by using the developed amperometric biosensor with the data obtained by the standard methods was shown (r = 0.995).  相似文献   

19.
A galactose biosensor is obtained by immobilizing galactose oxidase (GAO) in a microporous polyacrylonitrile (PAN) thin film. The effects of pH, potential and temperature on response current are studied. The optimum pH and apparent activation energy of enzyme-catalyzed reaction are 7.1 and 31.1?kJ?mol?1, respectively. The response current of the biosensor increases linearly with the increasing galactose concentration from 0.02 to 1.60?mmol?dm?3. The Michaelis–Menten constant value (Kmapp) is 12.15?mmol?dm?3. The biosensor shows good operational stability and reproducibility. The galactose biosensor is characterized with cyclic voltammogram, FTIR and UV-Vis.  相似文献   

20.
A biosensor for monitoring acetonitrile was constructed. A mixed culture was taken from a degradation reactor and mounted on top of a Clark electrode. The amperometric biosensor was placed in a flow-through cell and integrated into a flow injection system. The metabolic response in terms of oxygen consumption was well correlated to the concentration of acetonitrile in standard solutions. However, when the reaction products, acetic acid and ammonia, were also present, the response was erratic, due to the additional metabolic reaction on acetate. By introducing a hydrophobic barrier it was possible to eliminate the negative influence of these charged products and thus to improve the operational selectivity of the sensor.The biosensor showed good stability for analysis during at least 6 days and future work will focus on using it for monitoring and control of degradation processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号