首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Production of an unusual collagenous protein was observed in culture of dermal fibroblasts from four patients with Marfan syndrome. The apparent molecular weight of the protein was about 185 kDa after reduction with 2-mercaptoethanol and 175 kDa after limited pepsin treatment. The 185 kDa protein was susceptible to the bacterial collagenase but resistant to the animal collagenase. Immunoprecipitation revealed the specific interaction of the pepsin-treated 175 kDa collagenous protein with monoclonal and polyclonal antibodies to human type IV collagen. From the patterns of CNBr peptide mapping the 185 kDa band was identified as alpha 1 (IV) chain. Type IV collagen in the skin is generally considered to be of non-fibroblastic origin. However, in "diseased" condition, dermal fibroblasts might produce type IV collagen. The clinical manifestation in relation to production of type IV collagen by cultured skin fibroblasts from Marfan patients is discussed.  相似文献   

2.
Type VII collagen is the major structural protein of anchoring fibrils, which are believed to be critical for epidermal-dermal adhesion in the basement membrane zone of the skin. To elucidate possible mechanisms for the turnover of this protein, we examined the capacities of two proteases, human skin collagenase, which degrades interstitial collagens, and a protease with gelatinolytic and type IV collagenase activities, to cleave type VII collagen. At temperatures below the denaturation temperature, pepsin cleaves type VII collagen into products of approximately 95 and approximately 75 kDa. Human skin collagenase cleaved type VII collagen into two stable fragments of approximately 83 and approximately 80 kDa, and the type IV collagenase (gelatinase) produced a broad band of approximately 80 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Cleavage of type VII collagen was linear with time and enzyme concentration for both enzymes. Although the Km values were similar for both enzymes, the catalytic rate of cleavage by type IV collagenase is much faster than by interstitial collagenase, and shows a greater rate of increase with increasing temperature. Sequence analysis of the cleavage products from both enzymes showed typical collagenous sequences, indicating a relaxation in the helical part of the type VII collagen molecule at physiological temperature which makes it susceptible to gelatinolytic degradation. Interstitial collagenase from both normal skin cells and cells from patients with recessive dystrophic epidermolysis bullosa, a severe hereditary blistering disease in which both an anchoring fibril defect and excessive production of collagenase can be observed, produced identical cleavage products from type VII collagen. These data suggest a pathophysiological link between increased enzyme levels and the observed decrease or absence of anchoring fibrils.  相似文献   

3.
H-ras-transformed human bronchial epithelial cells (TBE-1) secrete a single major extracellular matrix metalloprotease which is not found in the normal parental cells. The enzyme is secreted in a latent form of 72 kDa, which can be activated to catalyze the cleavage of the basement membrane macromolecule type IV collagen. The substrates in their order of preference are: gelatin, type IV collagen, type V collagen, fibronectin, and type VII collagen; but the enzyme does not cleave the interstitial collagens or laminin. This protease is identical to gelatinase isolated from normal human skin explants, normal human skin fibroblasts, and SV40-transformed human lung fibroblasts. Based on its ability to initiate the degradation of type IV collagen in a pepsin-resistant portion of the molecule, it will be referred to as type IV collagenase. This enzyme is most likely the human analog of type IV collagenase detected in several rodent tumors, which has the same molecular mass and has been linked to their metastatic potential. Type IV collagenase consists of three domains. Two of them, the amino-terminal domain and the carboxyl-terminal domain, are homologous to interstitial collagenase and human and rat stromelysin. The middle domain, of 175 residues, is organized into three 58-residue head-to-tail repeats which are homologous to the type II motif of the collagen-binding domain of fibronectin. Type IV collagenase represents the third member of a newly recognized gene family coding for secreted extracellular matrix metalloproteases, which includes interstitial fibroblast collagenase and stromelysin.  相似文献   

4.
During wound healing, pericellular proteolysis is thought to be essential for the detachment of keratinocytes from basement membrane and in their migration into the wound bed. We have characterized integrin-type cell adhesion/migration receptors in human mucosal keratinocytes and examined their function in the regulation of type IV collagenase gene expression. Two major integrins of the β1 class, α2β1 and αβ1, were found to function as collagen and fibronectin receptors, respectively. Antibodies against β1 and α3 integrin subunits were found to stimulate the expression of the 92 kDa type IV collagenase severalfold in a dosedependent manner. Keratinocytes expressed also the 72 kDa type IV collagenase, the synthesis of which remained, however, unchanged in keratinocytes treated with anti-integrin antibodies. Stimulation of 92 kDa enzyme was found to be caused directly by antibody binding to integrins, since Fab-fragments of anti-β1 antibodies alone were able to induce collagenase expression in the absence of secondary, clustering antibodies. Antibodies against α2β1 integrin caused no stimulation. Keratinocytes seeded on different substrata (plastic, collagen, fibronectin, laminin, or vitronectin) showed equal induction of type IV collagenase expression. Expression of 92 kDa type IV collagenase could not be induced by peptides (GRGDS, GRGES), proteins (fibronectin, laminin, fibrinogen., albumin), or antibodies to fibronectin. We suggest that proteolytic processes around keratinocytes can be regulated by extracellular factors signalling through integrin-type receptors. © 1993 Wiley-Liss, Inc.  相似文献   

5.
The effect of linoleic acid hydroperoxide on in vitro production of matrix metalloproteinases (MMPs) by human skin fibroblasts was studied. The addition of linoleic acid hydroperoxide significantly increased the production of MMP-1 (tissue collagenase) and MMP-3 (stromelysin), while it rather decreased that of MMP-2 (gelatinase of 72 kDa; so-called "type IV collagenase"). The effect of lipid peroxides to alter collagen metabolism was discussed from pathogenic points of view.  相似文献   

6.
We examined whether fibroblasts from subcutaneous, colon or lung tissues of nude mice influence the invasive potential of highly metastatic human colon carcinoma KM12SM cells. Primary cultures of nude mouse fibroblasts from skin, lung and colon were established. Invasive and metastatic KM12SM cells were cultured alone or with fibroblasts. Growth and invasive properties of the KM12SM cells were evaluated as well as their production of gelatinase activity. KM12SM cells were able to grow on monolayers of all three fibroblast cultures but did not invade through skin fibroblasts. The conditioned media of KM12SM cells cocultured with skin, colon or lung fibroblasts were examined for the presence of type IV collagenase (gelatinase). KM12SM growing on plastic and on colon or lung fibroblasts produced significant levels of latent and active forms of 64 kDa type IV collagenase, whereas KM12SM cells cocultivated with nude mouse skin fibroblasts did not. In contrast, human squamous cell carcinoma A431 cells produced significant levels of collagenase type IV when cocultured with nude mouse skin fibroblasts, a tissue they invaded and completely penetrated. Incubation of KM12SM cells in serum-free medium containing recombinant human interferon-beta (fibroblast interferon) was associated with significant reduction in gelatinase activity. Since the production of type IV collagenase by human colon cancer cells is specifically inhibited by mouse skin fibroblasts but not by colon or lung fibroblasts the data suggest that organ-specific fibroblasts can influence the invasive and metastatic properties of KM12SM cells.  相似文献   

7.
Rat testicular cells in culture produce several metalloproteinases including type IV collagenases (Sang et al. Biol Reprod 1990; 43:946-955, 956-964). We have now investigated the regulation of testicular cell type IV collagenase and other metalloproteinases in vitro. Soluble laminin stimulated Sertoli cell type IV collagenase mRNA levels. However, three peptides corresponding to different domains of the laminin molecule (CSRAKQAASIKVASADR, FALRGDNP, CLQDGDVRV) did not influence type IV collagenase mRNA levels. Zymographic analysis of medium collected from these cultures revealed that neither soluble laminin nor any of the peptides influenced 72-kDa type IV collagenase protein levels. However, peptide FALRGDNP resulted in both, a selective increase in two higher molecular-weight metalloproteinases (83 kDa and 110 kDa and in an activation of the 72-kDa rat type IV collagenase. Interleukin-1, phorbol ester, testosterone, and FSH did not affect collagenase activation. Immunocytochemical studies demonstrated that the addition of soluble laminin resulted in a redistribution of type IV collagenase from intracellular vesicles to the cell-substrate region beneath the cells. Peptide FALRGDNP induced a change from a vesicular to peripheral plasma membrane type of staining pattern. Zymography of plasma membrane preparations demonstrated triton-soluble gelatinases of 76 kDa, 83 kDa, and 110 kDa and a triton-insoluble gelatinase of 225 kDa. These results indicate that testicular cell type IV collagenase mRNA levels, enzyme activation, and distribution are influenced by laminin and RGD-containing peptides.  相似文献   

8.
Human neutrophils can be triggered to release the collagenolytic metalloenzymes, interstitial collagenase and 92 kDa type IV collagenase/gelatinase. We have isolated and sequenced a 2.3 kb cDNA from a chronic granulocytic leukemia cDNA library that encodes for human neutrophil type IV collagenase. With the exception of one amino-acid substitution at position 280 (Arg → Gln), the deduced amino-acid sequences of neutrophil gelatinase are identical to the amino-acid sequences of the enzyme isolated from fibrosarcoma cells. Expression of the cDNA in E. coli yielded a 72 kDa protein having a gelatinolytic activity on zymogram gel. The recombinant enzyme was activated with APMA and trypsin. The activation was accompanied by a reduction in molecular weight of ≈ 10 kDa; such a reduction is characteristic of matrix metalloproteinases. The recombinant gelatinase cleaved native type V and XI collagens. Native type I collagen was not a substrate for the enzyme. These data suggest that native and recombinant 92 kDa type IV collagenase produced in E. coli have similar biochemical properties. The successful expression of the collagenase in a prokaryotic system will greatly facilitate the structure-function characterization of the enzyme and allow a more precise analysis of its physiological and pathological roles.  相似文献   

9.
The present paper describes how epithelial cells, cultured from bovine anterior lens capsule explants, synthesize and secrete procollagen type IV polypeptide chains alpha 1(IV) and alpha 2(IV). Metabolic labeling of these cells with [14C]proline for different time intervals and subsequent analysis by SDS/polyacrylamide gel electrophoresis revealed the presence of two polypeptide chains with apparent molecular masses of 180 kDa and 170 kDa. The procollagens were bacterial-collagenase-sensitive and were specifically immunoprecipitated by antibodies raised against the 7S domain of type IV collagen. Type IV procollagen poly(A)-rich RNA was isolated from cultured lens capsule cells and translated in a reticulocyte lysate cell-free system. Two polypeptides with apparent molecular masses of 152 kDa and 145 kDa were identified as procollagen type IV unmodified chains by gel electrophoresis, collagenase digestion and specific immunoprecipitation. During experiments in which cells were labeled in the presence of alpha, alpha'-bipyridyl, type IV procollagen appeared as one major band comigrating with a 145 kDa polypeptide on SDS-gel electrophoresis.  相似文献   

10.
Type IV collagenase (gelatinase) has a marked substrate specificity for denatured collagen (gelatin). Cleavage site specificity of type IV collagenase from human skin was determined using small collagenous peptides with varied sequences around Gly-Leu or Gly-Ile. Type IV collagenase showed essentially the same order of preference for the peptide substrates as did interstitial collagenase. Both required a peptide with a minimum of six amino acid residues to demonstrate significant gelatinolytic activity and were able to cleave uncharged molecules more rapidly than charged molecules. the repeating Gly-X-Y-Gly sequence of collagen is not an absolute requirement for either enzyme since both digested AcPro-Leu-Gly-Ile-Leu-Ala-Ala-OC2H5 at 70% of the rate of the best substrate peptide, AcPro-Leu-Gly-Leu-Leu-Gly-OC2H5. Km and kcat (Vmax) values were determined for several of the peptides and for the native substrate. Turnover numbers with type IV collagenase were similar to those with interstitial collagenase (Weingarten, H., Martin, R., and Feder, J. (1985) Biochemistry 24, 6730-6734). However, the Km for all peptides investigated was approximately 10-fold lower for type IV collagenase than for interstitial collagenase. Because type IV collagenase does not cleave helical interstitial collagens, the data support the conclusion that secondary structure determines whether the peptide bond can be hydrolyzed at any potential cleavage site.  相似文献   

11.
Proteolytic enzymes, such as gelatinase/type IV collagenase, play a pivotal role in cancer invasion and metastasis. Invasive human fibrosarcoma cells (HT1080) secrete two species of gelatinase/type IV collagenase, 68-72 kDa and 92 kDa enzymes. The purpose of this study is to elucidate which species of gelatinase/type IV collagenase plays a more important role in invasion. We have found that HT1080 x human fibroblast hybrids have reduced ability to invade a reconstituted basement membrane (Matrigel) in vitro compared to HT1080 cells, and abundantly secrete only the 68-72 kDa gelatinase/type IV collagenase. These data suggest that the 92 kDa gelatinase/type IV collagenase may be more important in HT1080 cell invasion. We next transfected HT1080 genomic DNA into non-invasive mouse C3H/10T1/2 fibroblast cells, which secrete only 68-72 kDa gelatinase/type IV collagenase. Four invasive transfectants were established. These invasive transfectants secreted the 92 kDa gelatinase/type IV collagenase in addition to the 68-72 kDa gelatinase/type IV collagenase, whereas non-invasive control DNA transfectants did not secrete the 92 kDa gelatinase/type IV collagenase. These results suggest that the induction of the 92 kDa gelatinase/type IV collagenase is important in the invasive phenotype.  相似文献   

12.
Pulmonary surfactant has two distinct functions within the lung: reduction of surface tension at the air-liquid interface and participation in innate host defense. Both functions are dependent on surfactant-associated proteins. Pseudomonas aeruginosa is primarily responsible for respiratory dysfunction and death in cystic fibrosis patients and is also a leading pathogen in nosocomial pneumonia. P. aeruginosa secretes a number of proteases that contribute to its virulence. We hypothesized that P. aeruginosa protease IV degrades surfactant proteins and results in a reduction in pulmonary surfactant host defense and biophysical functions. Protease IV was isolated from cultured supernatant of P. aeruginosa by gel chromatography. Incubation of cell-free bronchoalveolar lavage fluid with protease IV resulted in degradation of surfactant proteins (SP)-A, -D, and -B. SPs were degraded in a time- and dose-dependent fashion by protease IV, and degradation was inhibited by the trypsin-like serine protease inhibitor Nalpha-p-tosyl-L-lysine-chloromethyl ketone (TLCK). Degradation by protease IV inhibited SP-A- and SP-D-mediated bacterial aggregation and uptake by macrophages. Surfactant treated with protease IV was unable to reduce surface tension as effectively as untreated surfactant, and this effect was inhibited by TLCK. We speculate that protease IV may be an important contributing factor to the development and propagation of acute lung injury associated with P. aeruginosa via loss of surfactant function within the lung.  相似文献   

13.
To identify agents and mechanisms responsible for the thickened basement membranes characteristic of diabetic angiopathy we examined the effects of high glucose (30 mM) on the expression of genes related to extracellular matrix composition and turnover and investigated whether the changes induced by high glucose were mimicked and sustained by activation of protein kinase C or A. In human umbilical vein endothelial cells high glucose increased fibronectin, collagen IV, tissue plasminogen activator (tPA), and plasminogen activator-inhibitor 1 (PAI-1) mRNA levels 2-fold but did not affect type IV and interstitial collagenase expression. Acute treatment with phorbol esters resulted in increased collagen IV, tPA, PAI-1, and interstitial collagenase mRNAs; the type IV collagenase mRNA levels were instead suppressed to 50% of control. Upon longer exposure to phorbol esters (48 h) suppression of fibronectin and PAI-1 mRNAs also occurred. Intracellular elevation of cAMP led to over-expression of fibronectin and type IV collagenase and potentiated the effects of phorbol esters on collagen IV, tPA, and interstitial collagenase expression. The mRNA changes induced by high glucose occurred in the absence of protein kinase C activation or cAMP elevation. These studies indicate that events other than activation of protein kinase C or A bridge high ambient glucose to changes in endothelial cell gene expression that may contribute to diabetic angiopathy.  相似文献   

14.
Collagenase is synthesized and secreted by stimulated rabbit fibroblasts as a proenzyme that must be proteolytically cleaved to yield catalytically active species. The calcium ionophore A23187 has provided new insights into the regulation of collagenase activation cascade by living cells. A23187, at concentrations of 10-40 ng/ml, induced expression of collagenase and stromelysin mRNA and the secretion of procollagenase of 57 and 53 kDa and prostromelysin of 51 kDa. Interestingly, it also stimulated activation of procollagenase to active forms of 47 and 43 kDa. The concentrations and treatment times required for induction of gene expression and activation indicated that they were independent events. Active collagenase constituted up to 16% of the total collagenase present in medium conditioned by A23187-treated cells. When grown on a collagen substrate, A23187-treated cells degraded collagen in a spatially localized manner. In cells treated with agents that induce procollagenase only, collagenase was localized in the perinuclear Golgi area; however, in A23187-treated cells, collagenase was located in widely dispersed granules, suggesting different intracellular pathways for collagenase before, during, and after activation. Addition of serine, thiol-, and metalloproteinase inhibitors with A23187 to rabbit fibroblasts inhibited conversion of procollagenase to its active form to varying degrees, suggesting that enzymes in these classes are involved in a cascade of proteolytic events leading to collagenase activation.  相似文献   

15.
The enzyme phosphomannomutase/phosphoglucomutase (PMM/PGM) from P. aeruginosa is required for the biosynthesis of two bacterial exopolysaccharides: alginate and lipopolysaccharide (LPS). Both of these molecules play a role in the virulence of P. aeruginosa, an important human pathogen known for its ability to develop antibiotic resistance and cause chronic lung infections in cystic fibrosis patients. The crystal structure of PMM/PGM shows that the enzyme has four domains, three of which have a similar three-dimensional fold. Residues from all four domains of the protein contribute to the formation of a large active site cleft in the center of the molecule. Detailed information on the active site of PMM/PGM lays the foundation for structure-based inhibitor design. Inhibitors of sufficient potency and specificity should impair the biosynthesis of alginate and LPS, and may facilitate clearance of the bacteria by the host immune system and increase the efficacy of conventional antibiotic treatment against chronic P. aeruginosa infections.  相似文献   

16.
Latent collagenase has been isolated in pure form from the rheumatoid synovial fluid. The final preparation, activated by trypsin, yielded a collagenase of specific activity 2,227 units/mg. Electrophoresis in sodium dodecyl sulfate polyacrylamide gels revealed a protein doublet of 54 and 50 kDa. Trypsin or HgCl2 activation resulted in disappearance of the doublet and emergence of a new doublet of 47 and 43 kDa. The latent collagenase could also be activated by leucocyte cathepsin G or plasmin. Neither the latent nor the active collagenase from synovial fluid showed any cross-reactivity with the antibodies against leucocyte collagenase. The trypsin activated collagenase degraded collagen type I, II, III giving typical cleavage products but did not degrade type IV and V collagen.  相似文献   

17.
The gelatinolytic activity of rat uterus collagenase   总被引:6,自引:0,他引:6  
The collagenase produced by rat uterine cells in culture has been examined for its ability to degrade denatured collagen. Acting as a gelatinase, rat uterus collagenase was able to successfully degrade the denatured chains of collagen types I through V. In addition, the enzyme produced multiple cleavages in these chains and displayed values for Km of 4-5 microM, compared to values of 1-2 microM when native collagen was used as substrate. Furthermore, rat uterus collagenase degraded the alpha 2 chain of denatured type I collagen at a significantly faster rate than the alpha 1 chain, as previously observed for human skin fibroblast collagenase. In contrast to the action of human skin collagenase, however, the rat uterus enzyme was found to be a markedly better gelatinase than a collagenase, degrading the alpha chains of denatured type I guinea pig skin collagen at rates some 7-15-fold greater than native collagen. Human skin collagenase degrades the same denatured chains at rates ranging from 13-44% of its rate on native collagen. Rat uterus collagenase, then, is approximately 50 times better a gelatinase than is human skin collagenase. In addition to its ability to cleave denatured collagen chains at greater rates than native collagen, the rat uterus collagenase also attacked a wider spectrum of peptide bonds in gelatin than does human skin collagenase. In addition to cleaving the Gly-Leu and Gly-Ile bonds characteristic of its action on native collagen, rat uterus collagenase readily catalyzed the cleavage of Gly-Phe bonds in gelatin. The rat enzyme was also capable of cleaving Gly-Ala and Gly-Val bonds, although these bonds were somewhat less preferred by the enzyme. The cleavage of peptide bonds other than Gly-Leu and Gly-Ile appears to be a property of the collagenase itself and not a contaminating protease. Thus, it appears that the collagenase responsible for the degradation of collagen during the massive involution of the uterus might also act as a gelatinase to further degrade the initial products of collagenolysis to small peptides suitable for further metabolism.  相似文献   

18.
Recent studies have provided evidence to implicate involvement of the core oligosaccharide region of Pseudomonas aeruginosa lipopolysaccharide (LPS) in adherence to host tissues. To better understand the role played by LPS in the virulence of this organism, the aim of the present study was to clone and characterize genes involved in core biosynthesis. The inner-core regions of P. aeruginosa and Salmonella enterica serovar Typhimurium are structurally very similar; both contain two main chain residues of heptose linked to lipid A-Kdo2 (Kdo is 3-deoxy-D-manno-octulosonic acid). By electrotransforming a P. aeruginosa PAO1 library into Salmonella waaC and waaF (formerly known as rfaC and rfaF, respectively) mutants, we were able to isolate the homologous heptosyltransferase I and II genes of P. aeruginosa. Two plasmids, pCOREc1 and pCOREc2, which restored smooth LPS production in the waaC mutant, were isolated. Similarly, plasmid pCOREf1 was able to complement the Salmonella waaF mutant. Sequence analysis of the DNA insert of pCOREc2 revealed one open reading frame (ORF) which could code for a protein of 39.8 kDa. The amino acid sequence of the deduced protein exhibited 53% identity with the sequence of the WaaC protein of S. enterica serovar Typhimurium. pCOREf1 contained one ORF capable of encoding a 38.4-kDa protein. The sequence of the predicted protein was 49% identical to the sequence of the Salmonella WaaF protein. Protein expression by the Maxicell system confirmed that a 40-kDa protein was encoded by pCOREc2 and a 38-kDa protein was encoded by pCOREf1. Pulsed-field gel electrophoresis was used to determine the map locations of the cloned waaC and waaF genes, which were found to lie between 0.9 and 6.6 min on the PAO1 chromosome. Using a gene-replacement strategy, we attempted to generate P. aeruginosa waaC and waaF null mutants. Despite multiple attempts to isolate true knockout mutants, all transconjugants were identified as merodiploids.  相似文献   

19.
Abstract Lipopolysaccharide (LPS, endotoxin) was extracted from biofilm and planktonically grown monoagglutinable (1118) and polyagglutinable (258 and 15703) strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients with chronic pulmonary infections. Analysis by polyacrylamide gel electrophoresis (PAGE) followed by immune-detection of LPS fractions showed an S-form appearance of strain 1118 and 258 with three distinct clusters of high molecular weight bands, whereas 15703 appeared semi-rough. LPS of semi-rough cells grown planktonically and as biofilm showed a very similar PAGE pattern; however, the core/lipid A R-LPS fraction was more prominent in biofilm-LPS than in planktonic-LPS extracted from the S-form bacteria (1118 and 258). The apparent change in LPS sub-unit components of the bacteria when grown as biofilm may reflect changes in the outer membrane structure that contribute to the altered physico-chemical properties of biofilm bacteria in foreign-device associated infections and chronic P. aeruginosa lung infection in cystic fibrosis patients.  相似文献   

20.
The invasion of Pseudomonas aeruginosa and Salmonella enterica serovar Typhi into epithelial cells depends on the cystic fibrosis transmembrane conductance regulator (CFTR) protein as an epithelial receptor. In the case of P. aeruginosa , the bacterial ligand for CFTR is the outer core oligosaccharide portion of the lipopolysaccharide (LPS). To determine whether serovar Typhi LPS is also a bacterial ligand mediating internalization, we used both P. aeruginosa and serovar Typhi LPS as a competitive inhibitor of serovar Typhi invasion into the epithelial cell line T84. P. aeruginosa LPS containing a complete core efficiently inhibited serovar Typhi invasion. However, neither killed wild-type Typhi cells nor purified LPS were effective inhibitors. LPS from mutant Typhi strains defective in O side-chain synthesis, but with an apparently normal core, was capable of inhibiting invasion, but LPS obtained from a deeper rough mutant strain with alterations in fast-migrating core oligosaccharide failed to inhibit invasion. Lastly, exposure of wild-type serovar Typhi to T84 cultures before heat killing resulted in a structural alteration in its LPS that allowed the heat-killed cells to inhibit invasion of wild-type serovar Typhi. These data indicate that the serovar Typhi LPS core, like the P. aeruginosa LPS core, is a ligand mediating internalization of bacteria by epithelial cells, and that exposure of this ligand on wild-type Typhi is induced by the bacteria's interaction with host cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号