首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
Recent studies have shown that perceiving the pain of others activates brain regions in the observer associated with both somatosensory and affective-motivational aspects of pain, principally involving regions of the anterior cingulate and anterior insula cortex. The degree of these empathic neural responses is modulated by racial bias, such that stronger neural activation is elicited by observing pain in people of the same racial group compared with people of another racial group. The aim of the present study was to examine whether a more general social group category, other than race, could similarly modulate neural empathic responses and perhaps account for the apparent racial bias reported in previous studies. Using a minimal group paradigm, we assigned participants to one of two mixed-race teams. We use the term race to refer to the Chinese or Caucasian appearance of faces and whether the ethnic group represented was the same or different from the appearance of the participant'' own face. Using fMRI, we measured neural empathic responses as participants observed members of their own group or other group, and members of their own race or other race, receiving either painful or non-painful touch. Participants showed clear group biases, with no significant effect of race, on behavioral measures of implicit (affective priming) and explicit group identification. Neural responses to observed pain in the anterior cingulate cortex, insula cortex, and somatosensory areas showed significantly greater activation when observing pain in own-race compared with other-race individuals, with no significant effect of minimal groups. These results suggest that racial bias in neural empathic responses is not influenced by minimal forms of group categorization, despite the clear association participants showed with in-group more than out-group members. We suggest that race may be an automatic and unconscious mechanism that drives the initial neural responses to observed pain in others.  相似文献   

3.
Cheng Y  Lin CP  Liu HL  Hsu YY  Lim KE  Hung D  Decety J 《Current biology : CB》2007,17(19):1708-1713
Perceiving the pain of others activates a large part of the pain matrix in the observer [1]. Because this shared neural representation can lead to empathy or personal distress [2, 3], regulatory mechanisms must operate in people who inflict painful procedures in their practice with patient populations in order to prevent their distress from impairing their ability to be of assistance. In this functional magnetic resonance imaging MRI study, physicians who practice acupuncture were compared to naive participants while observing animated visual stimuli depicting needles being inserted into different body parts, including the mouth region, hands, and feet. Results indicate that the anterior insula somatosensory cortex, periaqueducal gray, and anterior cingulate cortex were significantly activated in the control group, but not in the expert group, who instead showed activation of the medial and superior prefrontal cortices and the temporoparietal junction, involved in emotion regulation and theory of mind.  相似文献   

4.
Previous studies showed that the understanding of others'' basic emotional experiences is based on a “resonant” mechanism, i.e., on the reactivation, in the observer''s brain, of the cerebral areas associated with those experiences. The present study aimed to investigate whether the same neural mechanism is activated both when experiencing and attending complex, cognitively-generated, emotions. A gambling task and functional-Magnetic-Resonance-Imaging (fMRI) were used to test this hypothesis using regret, the negative cognitively-based emotion resulting from an unfavorable counterfactual comparison between the outcomes of chosen and discarded options. Do the same brain structures that mediate the experience of regret become active in the observation of situations eliciting regret in another individual? Here we show that observing the regretful outcomes of someone else''s choices activates the same regions that are activated during a first-person experience of regret, i.e. the ventromedial prefrontal cortex, anterior cingulate cortex and hippocampus. These results extend the possible role of a mirror-like mechanism beyond basic emotions.  相似文献   

5.
Psychiatric classificatory systems consider obsessions and compulsions as forms of anxiety disorder. However, the neurology of diseases associated with obsessive-compulsive symptoms suggests the involvement of fronto-striatal regions likely to be involved in the mediation of the emotion of disgust, suggesting that dysfunctions of disgust should be considered alongside anxiety in the pathogenesis of obsessive-compulsive behaviours. We therefore tested recognition of facial expressions of basic emotions (including disgust) by groups of participants with obsessive-compulsive disorder (OCD) and with Gilles de la Tourette''s syndrome (GTS) with an without co-present obsessive-compulsive behaviours (GTS with OCB; GTS without OCB). A group of people suffering from panic disorder and generalized anxiety were also included in the study. Both groups with obsessive-compulsive symptoms (OCD; GTS with OCB) showed impaired recognition of facial expressions of disgust. Such problems were not evident in participants with panic disorder and generalized anxiety, or for participants with GTS without obsessions or compulsions, indicating that the deficit is closely related to the presence of obsessive-compulsive symptoms. Participants with OCD were able to assign words to emotion categories without difficulty, showing that their problem with disgust is linked to a failure to recognize this emotion in others and not a comprehension or response criterion effect. Impaired recognition of disgust is consistent with the neurology of OCD and with the idea that abnormal experience of disgust may be involved in the genesis of obsessions and compulsions.  相似文献   

6.
Aleman A  Swart M 《PloS one》2008,3(11):e3622
The facial expression of contempt has been regarded to communicate feelings of moral superiority. Contempt is an emotion that is closely related to disgust, but in contrast to disgust, contempt is inherently interpersonal and hierarchical. The aim of this study was twofold. First, to investigate the hypothesis of preferential amygdala responses to contempt expressions versus disgust. Second, to investigate whether, at a neural level, men would respond stronger to biological signals of interpersonal superiority (e.g., contempt) than women. We performed an experiment using functional magnetic resonance imaging (fMRI), in which participants watched facial expressions of contempt and disgust in addition to neutral expressions. The faces were presented as distractors in an oddball task in which participants had to react to one target face. Facial expressions of contempt and disgust activated a network of brain regions, including prefrontal areas (superior, middle and medial prefrontal gyrus), anterior cingulate, insula, amygdala, parietal cortex, fusiform gyrus, occipital cortex, putamen and thalamus. Contemptuous faces did not elicit stronger amygdala activation than did disgusted expressions. To limit the number of statistical comparisons, we confined our analyses of sex differences to the frontal and temporal lobes. Men displayed stronger brain activation than women to facial expressions of contempt in the medial frontal gyrus, inferior frontal gyrus, and superior temporal gyrus. Conversely, women showed stronger neural responses than men to facial expressions of disgust. In addition, the effect of stimulus sex differed for men versus women. Specifically, women showed stronger responses to male contemptuous faces (as compared to female expressions), in the insula and middle frontal gyrus. Contempt has been conceptualized as signaling perceived moral violations of social hierarchy, whereas disgust would signal violations of physical purity. Thus, our results suggest a neural basis for sex differences in moral sensitivity regarding hierarchy on the one hand and physical purity on the other.  相似文献   

7.
Disgust, an emotion motivating withdrawal from offensive stimuli, protects us from the risk of biological pathogens and sociomoral violations. Homogeneity of its two types, namely, core and moral disgust has been under intensive debate. To examine the dynamic relationship between them, we recorded event-related potentials (ERPs) for core disgust, moral disgust and neutral pictures while participants performed a modified oddball task. ERP analysis revealed that N1 and P2 amplitudes were largest for the core disgust pictures, indicating automatic processing of the core disgust-evoking pictures. N2 amplitudes were higher for pictures evoking moral disgust relative to core disgust and neutral pictures, reflecting a violation of social norms. The core disgust pictures elicited larger P3 and late positive potential (LPP) amplitudes in comparison with the moral disgust pictures which, in turn, elicited larger P3 and LPP amplitudes when compared to the neutral pictures. Taken together, these findings indicated that core and moral disgust pictures elicited different neural activities at various stages of information processing, which provided supporting evidence for the heterogeneity of disgust.  相似文献   

8.
Neuropsychological studies report more impaired responses to facial expressions of fear than disgust in people with amygdala lesions, and vice versa in people with Huntington''s disease. Experiments using functional magnetic resonance imaging (fMRI) have confirmed the role of the amygdala in the response to fearful faces and have implicated the anterior insula in the response to facial expressions of disgust. We used fMRI to extend these studies to the perception of fear and disgust from both facial and vocal expressions. Consistent with neuropsychological findings, both types of fearful stimuli activated the amygdala. Facial expressions of disgust activated the anterior insula and the caudate-putamen; vocal expressions of disgust did not significantly activate either of these regions. All four types of stimuli activated the superior temporal gyrus. Our findings therefore (i) support the differential localization of the neural substrates of fear and disgust; (ii) confirm the involvement of the amygdala in the emotion of fear, whether evoked by facial or vocal expressions; (iii) confirm the involvement of the anterior insula and the striatum in reactions to facial expressions of disgust; and (iv) suggest a possible general role for the perception of emotional expressions for the superior temporal gyrus.  相似文献   

9.
There is growing evidence that individuals are able to understand others’ emotions because they “embody” them, i.e., re-experience them by activating a representation of the observed emotion within their own body. One way to study emotion embodiment is provided by a multisensory stimulation paradigm called emotional visual remapping of touch (eVRT), in which the degree of embodiment/remapping of emotions is measured as enhanced detection of near-threshold tactile stimuli on one’s own face while viewing different emotional facial expressions. Here, we measured remapping of fear and disgust in participants with low (LA) and high (HA) levels of alexithymia, a personality trait characterized by a difficulty in recognizing emotions. The results showed that fear is remapped in LA but not in HA participants, while disgust is remapped in HA but not in LA participants. To investigate the hypothesis that HA might exhibit increased responses to emotional stimuli producing a heightened physical and visceral sensations, i.e., disgust, in a second experiment we investigated participants’ interoceptive abilities and the link between interoception and emotional modulations of VRT. The results showed that participants’ disgust modulations of VRT correlated with their ability to perceive bodily signals. We suggest that the emotional profile of HA individuals on the eVRT task could be related to their abnormal tendency to be focalized on their internal bodily signals, and to experience emotions in a “physical” way. Finally, we speculated that these results in HA could be due to a enhancement of insular activity during the perception of disgusted faces.  相似文献   

10.
It has been established that the recognition of facial expressions integrates contextual information. In this study, we aimed to clarify the influence of contextual odors. The participants were asked to match a target face varying in expression intensity with non-ambiguous expressive faces. Intensity variations in the target faces were designed by morphing expressive faces with neutral faces. In addition, the influence of verbal information was assessed by providing half the participants with the emotion names. Odor cues were manipulated by placing participants in a pleasant (strawberry), aversive (butyric acid), or no-odor control context. The results showed two main effects of the odor context. First, the minimum amount of visual information required to perceive an expression was lowered when the odor context was emotionally congruent: happiness was correctly perceived at lower intensities in the faces displayed in the pleasant odor context, and the same phenomenon occurred for disgust and anger in the aversive odor context. Second, the odor context influenced the false perception of expressions that were not used in target faces, with distinct patterns according to the presence of emotion names. When emotion names were provided, the aversive odor context decreased intrusions for disgust ambiguous faces but increased them for anger. When the emotion names were not provided, this effect did not occur and the pleasant odor context elicited an overall increase in intrusions for negative expressions. We conclude that olfaction plays a role in the way facial expressions are perceived in interaction with other contextual influences such as verbal information.  相似文献   

11.
While the limbic system theory continues to be part of common scientific parlance, its validity has been questioned on multiple grounds. Nonetheless, the issue of whether or not there exists a set of brain areas preferentially dedicated to emotional processing remains central within affective neuroscience. Recently, a widespread neural reference space for emotion which includes limbic as well as other regions was characterized in a large meta-analysis. As methodologically heterogeneous studies go into such meta-analyses, showing in an individual study in which all parameters are kept constant, the involvement of overlapping areas for various emotion conditions in keeping with the neural reference space for emotion, would serve as valuable confirmatory evidence. Here, using fMRI, 20 young adult men were scanned while viewing validated neutral and effective emotion-eliciting short film excerpts shown to quickly and specifically elicit disgust, amusement, or sexual arousal. Each emotion-specific run included, in random order, multiple neutral and emotion condition blocks. A stringent conjunction analysis revealed a large overlap across emotion conditions that fit remarkably well with the neural reference space for emotion. This overlap included symmetrical bilateral activation of the medial prefrontal cortex, the anterior cingulate, the temporo-occipital junction, the basal ganglia, the brainstem, the amygdala, the hippocampus, the thalamus, the subthalamic nucleus, the posterior hypothalamus, the cerebellum, as well as the frontal operculum extending towards the anterior insula. This study clearly confirms for the visual modality, that processing emotional stimuli leads to widespread increases in activation that cluster within relatively confined areas, regardless of valence.  相似文献   

12.

Background

The humanoid robot WE4-RII was designed to express human emotions in order to improve human-robot interaction. We can read the emotions depicted in its gestures, yet might utilize different neural processes than those used for reading the emotions in human agents.

Methodology

Here, fMRI was used to assess how brain areas activated by the perception of human basic emotions (facial expression of Anger, Joy, Disgust) and silent speech respond to a humanoid robot impersonating the same emotions, while participants were instructed to attend either to the emotion or to the motion depicted.

Principal Findings

Increased responses to robot compared to human stimuli in the occipital and posterior temporal cortices suggest additional visual processing when perceiving a mechanical anthropomorphic agent. In contrast, activity in cortical areas endowed with mirror properties, like left Broca''s area for the perception of speech, and in the processing of emotions like the left anterior insula for the perception of disgust and the orbitofrontal cortex for the perception of anger, is reduced for robot stimuli, suggesting lesser resonance with the mechanical agent. Finally, instructions to explicitly attend to the emotion significantly increased response to robot, but not human facial expressions in the anterior part of the left inferior frontal gyrus, a neural marker of motor resonance.

Conclusions

Motor resonance towards a humanoid robot, but not a human, display of facial emotion is increased when attention is directed towards judging emotions.

Significance

Artificial agents can be used to assess how factors like anthropomorphism affect neural response to the perception of human actions.  相似文献   

13.
We attempt to determine the discriminability and organization of neural activation corresponding to the experience of specific emotions. Method actors were asked to self-induce nine emotional states (anger, disgust, envy, fear, happiness, lust, pride, sadness, and shame) while in an fMRI scanner. Using a Gaussian Naïve Bayes pooled variance classifier, we demonstrate the ability to identify specific emotions experienced by an individual at well over chance accuracy on the basis of: 1) neural activation of the same individual in other trials, 2) neural activation of other individuals who experienced similar trials, and 3) neural activation of the same individual to a qualitatively different type of emotion induction. Factor analysis identified valence, arousal, sociality, and lust as dimensions underlying the activation patterns. These results suggest a structure for neural representations of emotion and inform theories of emotional processing.  相似文献   

14.
Reappraisal is a well-known emotion regulation strategy. Recent neuroimaging studies suggest that reappraisal recruits both medial and lateral prefrontal brain regions. However, few studies have investigated neural representation of reappraisals associated with anticipatory anxiety, and the specific nature of the brain activity underlying this process remains unclear. We used functional magnetic resonance imaging (fMRI) to investigate neural activity associated with reappraisals of transient anticipatory anxiety. Although transient anxiety activated mainly subcortical regions, reappraisals targeting the anxiety were associated with increased activity in the medial and lateral prefrontal regions (including the orbitofrontal and anterior cingulate cortices). Reappraisal decreased fear circuit activity (including the amygdala and thalamus). Correlational analysis demonstrated that reductions in subjective anxiety associated with reappraisal were correlated with orbitofrontal and anterior cingulate cortex activation. Reappraisal recruits medial and lateral prefrontal regions; particularly the orbitofrontal and anterior cingulate cortices are associated with successful use of this emotion regulation strategy.  相似文献   

15.
Watching the movie scene in which a tarantula crawls on James Bond's chest can make us literally shiver--as if the spider crawled on our own chest. What neural mechanisms are responsible for this "tactile empathy"? The observation of the actions of others activates the premotor cortex normally involved in the execution of the same actions. If a similar mechanism applies to the sight of touch, movies depicting touch should automatically activate the somatosensory cortex of the observer. Here we found using fMRI that the secondary but not the primary somatosensory cortex is activated both when the participants were touched and when they observed someone or something else getting touched by objects. The neural mechanisms enabling our own sensation of touch may therefore be a window also to our understanding of touch.  相似文献   

16.
Patients with frontotemporal dementia have pervasive changes in emotion recognition and social cognition, yet the neural changes underlying these emotion processing deficits remain unclear. The multimodal system model of emotion proposes that basic emotions are dependent on distinct brain regions, which undergo significant pathological changes in frontotemporal dementia. As such, this syndrome may provide important insight into the impact of neural network degeneration upon the innate ability to recognise emotions. This study used voxel-based morphometry to identify discrete neural correlates involved in the recognition of basic emotions (anger, disgust, fear, sadness, surprise and happiness) in frontotemporal dementia. Forty frontotemporal dementia patients (18 behavioural-variant, 11 semantic dementia, 11 progressive nonfluent aphasia) and 27 healthy controls were tested on two facial emotion recognition tasks: The Ekman 60 and Ekman Caricatures. Although each frontotemporal dementia group showed impaired recognition of negative emotions, distinct associations between emotion-specific task performance and changes in grey matter intensity emerged. Fear recognition was associated with the right amygdala; disgust recognition with the left insula; anger recognition with the left middle and superior temporal gyrus; and sadness recognition with the left subcallosal cingulate, indicating that discrete neural substrates are necessary for emotion recognition in frontotemporal dementia. The erosion of emotion-specific neural networks in neurodegenerative disorders may produce distinct profiles of performance that are relevant to understanding the neurobiological basis of emotion processing.  相似文献   

17.
Emotion-regulation strategies are understood to influence food intake. This study examined the neurophysiological underpinnings of negative emotion processing and emotion regulation in individuals with excess weight compared to normal-weight controls. Fifteen participants with excess-weight (body mass index >25) and sixteen normal-weight controls (body mass index 18–25) performed an emotion-regulation task during functional magnetic resonance imaging. Participants were exposed to 24 negative affective or neutral pictures that they were instructed to Observe (neutral pictures), Maintain (sustain the emotion elicited by negative pictures) or Regulate (down-regulate the emotion provoked by negative pictures through previously trained reappraisal techniques). When instructed to regulate negative emotions by means of cognitive reappraisal, participants with excess weight displayed persistently heightened activation in the right anterior insula. Decreased responsivity was also found in right anterior insula, the orbitofrontal cortex and cerebellum during negative emotion experience in participants with excess weight. Psycho-physiological interaction analyses showed that excess-weight participants had decreased negative functional coupling between the right anterior insula and the right dlPFC, and the bilateral dmPFC during cognitive reappraisal. Our findings support contentions that excess weight is linked to an abnormal pattern of neural activation and connectivity during the experience and regulation of negative emotions, with the insula playing a key role in these alterations. We posit that ineffective regulation of emotional states contributes to the acquisition and preservation of excess weight.  相似文献   

18.
Recently, numerous efforts have been made to understand the neural mechanisms underlying cognitive regulation of emotion, such as cognitive reappraisal. Many studies have reported that cognitive control of emotion induces increases in neural activity of the control system, including the prefrontal cortex and the dorsal anterior cingulate cortex, and increases or decreases (depending upon the regulation goal) in neural activity of the appraisal system, including the amygdala and the insula. It has been hypothesized that information about regulation goals needs to be processed through interactions between the control and appraisal systems in order to support cognitive reappraisal. However, how this information is represented in the dynamics of cortical activity remains largely unknown. To address this, we investigated temporal changes in gamma band activity (35–55 Hz) in human electroencephalograms during a cognitive reappraisal task that was comprised of three reappraisal goals: to decease, maintain, or increase emotional responses modulated by affect-laden pictures. We examined how the characteristics of gamma oscillations, such as spectral power and large-scale phase synchronization, represented cognitive reappraisal goals. We found that left frontal gamma power decreased, was sustained, or increased when the participants suppressed, maintained, or amplified their emotions, respectively. This change in left frontal gamma power appeared during an interval of 1926 to 2453 ms after stimulus onset. We also found that the number of phase-synchronized pairs of gamma oscillations over the entire brain increased when participants regulated their emotions compared to when they maintained their emotions. These results suggest that left frontal gamma power may reflect cortical representation of emotional states modulated by cognitive reappraisal goals and gamma phase synchronization across whole brain regions may reflect emotional regulatory efforts to achieve these goals. Our study may provide the basis for an electroencephalogram-based neurofeedback system for the cognitive regulation of emotion.  相似文献   

19.
As humans, we perceive feelings from our bodies that relate our state of well-being, our energy and stress levels, our mood and disposition. How do we have these feelings? What neural processes do they represent? Recent functional anatomical work has detailed an afferent neural system in primates and in humans that represents all aspects of the physiological condition of the physical body. This system constitutes a representation of 'the material me', and might provide a foundation for subjective feelings, emotion and self-awareness.  相似文献   

20.
Patients at the end of their life who express a wish to die sometimes explain their wish as the desire not to be a burden to others. This feeling needs to be investigated as an emotion with an intrinsically dialogical structure. Using a phenomenological approach, two key meanings of the feeling of being a burden to others as a reason for a wish to die are identified. First, it is an existential suffering insofar as it contains the perception of a plight so desperate that it can only be relieved by the end of the patient’s existence. Second, it is an empathic concern that implies caring about those who bear the burden of caring for the person at the end of their life. It is therefore a moral emotion, encompassing a series of difficulties, including the subjective perception of a stark imbalance between giving and taking, the adequacy of the representation of the caregiver burden in the patient’s mind, and the danger of diminishing the worth of one’s life out of shame or self‐denigration. R. D. Laing’s terminology of crossed perspectives in interexperience is used to systematically distinguish the actual caregiver burden, the patient’s view of the caregiver burden, the stress for the patient in feeling that s/he is a burden to the caregiver, and the caregiver’s view of the patient’s stress. The sense of being a burden implies the belief that the caregiver feels burdened, and the fear that this burden could become unbearable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号