首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A technique of phase-polarisation contrast (PPC) for the enhancement of the contrast of a surface plasmon resonance (SPR) intensity profile is proposed and experimentally realised. The technique exploits the peculiarities of light phase and polarisation behaviour under SPR. It applies to non-optimum SPR coupling conditions and enables one to lower the resonant minimum of reflected intensity nearly to zero, and hence to increase substantially the ratio of the intensity from the resonance to that at the minimum. We observed the contrast enhancement by more than one order of magnitude when we applied the PPC scheme. The PPC can be efficiently employed in commercial SPR sensors, as it significantly reduces restrictions on allowable parameters of SPR-supporting metal films and biomolecular layers immobilised on them, facilitates SPR observation, and increases the accuracy of SPR shift measurements.  相似文献   

2.
Monoclonal antibodies have become an increasingly important part of fundamental research and medical applications. To meet the high market demand for monoclonal antibodies in the biopharmaceutical sector, industrial manufacturing needs to be achieved by large scale, highly productive and consistent production processes. These are subject to international guidelines and have to be monitored intensely due to high safety standards for medical applications. Surface plasmon resonance spectroscopy — a fast, real‐time, and label‐free bio‐sensing method — represents an interesting alternative to the quantification of monoclonal antibody concentrations by enzyme‐linked immunosorbent assay during monoclonal antibody production. For the application of monitoring bioactive and total monoclonal antibody concentrations in cell culture samples, a surface plasmon resonance assay using a target‐monoclonal antibody model system was developed. In order to ensure the subsequent detection of bioactive monoclonal antibody concentrations, suitable immobilization strategies of the target were identified. A significant decrease of the limit of detection was achieved by using an adapted affinity method compared to the commonly used amine coupling. Furthermore, the system showed limit of detection in the low ng/mL range similar to control quantifications by enzyme‐linked immunosorbent assay. Moreover, the comparison of total to bioactive monoclonal antibody concentrations allows analysis of antibody production efficiency. The development of an alternative quantification system to monitor monoclonal antibody production was accomplished using surface plasmon resonance with the advantage of low analyte volume, shorter assay time, and biosensor reusability by target‐layer regeneration. The established method provides the basis for the technical development of a surface plasmon resonance‐based system for continuous process monitoring.  相似文献   

3.
Using a surface plasmon resonance (SPR)-based biosensor (BIA-technology), we have studied the interaction of ten different murine monoclonal antibodies (mAbs, all IgG1), raised against the main protein constituent of human low density lipoprotein (LDL), i.e. the apolipoprotein B-100 (apoB-100). These mAbs identify distinct domains on apoB-100, relevant to LDL-receptor interaction: epitopes in the amino-terminal region (mAbs L7, L9, L10 and L11: aa 1–1297) and in the middle region (mAb 6B: aa 1480–1693; mAbs 2A, 3B: aa 2152–2377; mAbs 9A, L2 and L4: aa 2657–3248) of native apoB-100. A multisite binding analysis was performed to further characterize the epitopes recognized by all these mAbs. A rabbit anti-mouse IgG1-Fc antibody (RAM.Fc) was first coupled to the gold surface in order to capture one anti-human apoB-100 mAb. ApoB-100 protein was subsequently injected and allowed to react with this immobilized, oriented antibody. Multisite binding assays were then performed, by sequentially flowing other mAbs, in different orders, over the sensing surface. The capacity of each mAb to interact with the entrapped apoB-100 in a multimolecular complex was monitored in real time by SPR. The results achieved were comparable to those obtained by western immunoblotting using the same reagents. However, SPR ensures a more detailed epitope identification, demonstrating that BIA-technology can be successfully used for mapping distinct epitopes on apoB-100 protein in solution dispensing with labels and secondary tracers; moreover, compared with conventional immunoassays, it is significantly time saving (CNR-P.F. MADESS 2).  相似文献   

4.
利用一种全新的生物大分子相互作用检测仪表面等离子激元共振(SPR)生物传感器,对乙肝表面抗原,抗体,破伤风类毒素,抗体等生物制品进行生物特异性相互作用分析(BIA),并对其在免疫学检测上的特征进行了探讨。  相似文献   

5.
6.
A new, powerful method is presented for screening the binding in real time and taking place under dynamic conditions of oligosaccharides to lectins. The approach combines an SPR biosensor and HPLC profiling with fluorescence detection, and is applicable to complex mixtures of oligosaccharides in terms of ligand-fishing. Labeling the oligosaccharides with 2-aminobenzamide ensures a detection level in the fmol range. In an explorative study the binding of RNase B-derived oligomannose-type N-glycans to biosensor-immobilized concanavalin A (Con A) was examined, and an affinity ranking could be established for Man(5)GlcNAc(2) to Man(9)GlcNAc(2), as monitored by HPLC. In subsequent experiments and using well-defined labeled as well as nonlabeled oligosaccharides, it was found that the fluorescent tag does not interfere with the binding and that the optimum epitope for the interaction with Con A comprises the tetramannoside unit Manalpha2Manalpha6(Manalpha3)Man[D(3)B(A)4'], rather than the generally accepted trimannoside Manalpha6 (Manalpha3)Man [B(A)4' or 4(4')3]. In a similar experimental setup, the interaction of various fucosylated human milk oligosaccharides with the fucose-binding lectin from Lotus tetragonolobus purpureaus was studied, and it appeared that oligosaccharides containing blood group H could selectively be retained and eluted from the lectin-coated surface. Finally, using the same lectin and a mixture of O-glycans derived from bovine submaxillary gland mucin, minor constituents but containing fucose could selectively be picked from the analyte solution as demonstrated by HPLC profiling.  相似文献   

7.
表面等离子体共振(surface plasmon resonance,SPR)技术作为一种新型的免标记、实时在线研究生物分子间相互作用的高灵敏传感技术,已经在生命科学领域中得到了大量应用。该文简要介绍了SPR生物传感器的基本原理,重点评述了其在新药筛选和药物作用机制方面的研究进展,并对其前景进行了展望。  相似文献   

8.
Junctional adhesion molecule-A (JAM-A) is an adherens and tight junction protein expressed by endothelial and epithelial cells and associated with cancer progression. We present here the extensive characterization of immune complexes involving JAM-A antigen and three monoclonal antibodies (mAbs), including hz6F4-2, a humanized version of anti-tumoral 6F4 mAb identified by a functional and proteomic approach in our laboratory. A specific workflow that combines orthogonal approaches has been designed to determine binding stoichiometries along with JAM-A epitope mapping determination at high resolution for these three mAbs. Native mass spectrometry experiments revealed different binding stoichiometries and affinities, with two molecules of JAM-A being able to bind to hz6F4-2 and F11 Fab, while only one JAM-A was bound to J10.4. Surface plasmon resonance indirect competitive binding assays suggested epitopes located in close proximity for hz6F4-2 and F11. Finally, hydrogen-deuterium exchange mass spectrometry was used to precisely identify epitopes for all mAbs. The results obtained by orthogonal biophysical approaches showed a clear correlation between the determined epitopes and JAM-A binding characteristics, allowing the basis for molecular recognition of JAM-A by hz6F4-2 to be definitively established for the first time. Taken together, our results highlight the power of MS-based structural approaches for epitope mapping and mAb conformational characterization.  相似文献   

9.
A method has been developed for measurement of antibody affinity and cross-reactivity by surface plasmon resonance spectroscopy using the EK-coil heterodimeric coiled-coil peptide capture system. This system allows for reversible capture of synthetic peptide ligands on a biosensor chip surface, with the advantage that multiple antibody-antigen interactions can be analyzed using a single biosensor chip. This method has proven useful in the development of a synthetic peptide anti-Pseudomonas aeruginosa (PA) vaccine. Synthetic peptide ligands corresponding to the receptor binding domains of pilin from four strains of PA were conjugated to the E-coil strand of the heterodimeric coiled-coil domain and individually captured on the biosensor chip through dimerization with the immobilized K-coil strand. Polyclonal rabbit IgG raised against pilin epitopes was injected over the sensor chip surface for kinetic analysis of the antigen-antibody interaction. The kinetic rate constants, k(on) and k(off), and equilibrium association and dissociation constants, KA and KD, were calculated. Antibody affinities ranged from 1.14 x 10(-9) to 1.60 x 10(-5) M. The results suggest that the carrier protein and adjuvant used during immunization make a dramatic difference in antibody affinity and cross-reactivity. Antibodies raised against the PA strain K pilin epitope conjugated to keyhole limpet haemocyanin using Freund's adjuvant system were more broadly cross-reactive than antibodies raised against the same epitope conjugated to tetanus toxoid using Adjuvax adjuvant. The method described here is useful for detailed characterization of the interaction of polyclonal antibodies with a panel of synthetic peptide ligands with the objective of obtaining high affinity and cross-reactive antibodies in vaccine development.  相似文献   

10.
RNA loop-loop complexes are motifs that regulate biological functions in both prokaryotic and eukaryotic organisms. In E. coli, RNAI, an antisense RNA encoded by the ColE1 plasmid, regulates the plasmid replication by recognizing through loop-loop interactions RNAII, the RNA primer that binds to the plasmidic DNA to initiate the replication. Rop, a plasmid-encoded homodimeric protein interacts with this transient RNAI-RNAII kissing complex. A surface plasmon resonance (SPR)-based biosensor was used to investigate this protein-nucleic acid ternary complex, at 5 degrees C, in experimental conditions such as the protein binds either to the loop-loop complex while it dissociates or to a saturated stable RNAI-RNAII surface. The results show that RNAI hairpin dissociates from the RNAII surface 110 times slower in the presence of Rop than in its absence. Rop binds to RNAI-RNAII with an on-rate of 3.6 x 10(6) M(-1) s(-1) and an off-rate of 0.11 s(-1), resulting in a binding equilibrium constant equal to 31 nM. A Scatchard-plot analysis of the interaction monitored by SPR confirms a 1:1 complex of Rop and RNAI-RNAII as observed for non-natural Rop-loop-loop complexes.  相似文献   

11.
In this study, an automated surface plasmon resonance (SPR)-based biosensor was compared with a quartz crystal microbalance (QCM) biosensor. The two biosensor systems were used for characterizing a site-directed monoclonal antibody (mAb), raised against the C-terminal heptapeptide ET-115–21 of the human endothelin (ET-1). The mAb was characterized by its capacity for binding to ET-1, ET-3, Big.ET-122–38, the C-terminal (ET-115–21, ET-116–21, ET-117–21), and six derivates of ET-116–21, each containing a substitution with alanine (Ala) of a single aminoacid from position 16–21, respectively. The mAb reacted well with ET-1 and its fragments ET-115–21, ET-116–21, ET-117–21, but showed only a partial cross-reaction with ET-3, and did not bind human Big.ET-122–38. The Ala substitution on position 16,17, or 19 of ET-116–21 did not affect the antibody binding capacity of the hexapaptide ET-116–21. On the contrary, Ala substitution or Asp18, Ile20 and particularly Trp21, inhibited its immunoreactivity. Thus the C-terminal represents an immunodominant epitope in ET-1 and is important for antibody binding. The SPR and QCM response signals were similar in shape but differing in time scales, reflecting differences in detection mechanisms. With regard to the fundamental problem of comparing different measurement principles, we found a good correlation between results obtained using the BIA technology and the QCM.  相似文献   

12.
It is established that achieving higher binding affinities in carbohydrate-protein interactions requires multivalent presentations of the sugar ligands at the receptor binding site. Several inhibition, calorimetric, mass balance, and other studies have reiterated the beneficial effects of molecular level clustering of the sugar ligands for tight binding to the receptors. We have undertaken an effort to study the multivalent effects involving larger assemblies, represented by micelles, and their lectin interactions. The micelles were constituted with monomer bearing one- or two-sugar moieties at the monomolecular level and with varying the distances between the sugar moieties. Micellar aggregation studies and dynamic light scattering (DLS) studies afforded details of the aggregation numbers and the hydrodynamic diameters of various glycolipid (GL) micelles. The GL micelles were used as analytes of surface plasmon resonance (SPR) experiments on a lectin concanavalin A (Con A)-immobilized surface. SPR studies of the micelle-lectin interactions demonstrate that the ligand-receptor binding can be fit into the bivalent analyte model of interaction. Furthermore, micelles formed from two-sugar containing GLs are able to elicit favorable kinetic association rate constants in comparison to the micelles constituted with one-sugar containing GLs. The kinetic rate constants across the micelles and the effect of the sugar valencies in the GLs are discussed.  相似文献   

13.
We enhanced the sensitivity of surface plasmon resonance biosensor by the conversion of the real-time direct binding immunoassay into the sandwich immunoassay, in which colloidal gold particles coated with anti-mouse IgG was used. By the immobilization of anti-mouse IgG onto the carboxymethyl dextran surface of thin gold film, the direct binding of analyte (mouse IgG) onto the sensor chip, and the injection of colloidal gold particles coated with antimouse IgG, about 100 times of sensitivity enhancement was obtained. This result suggests that nanoparticles, which has a high refractive index, homogeneous ultrafine structure and capability of size control, would be applicable for the detection of very small quantity of biomaterial.  相似文献   

14.
Bacteriophytochromes (BphP) are phytochrome‐like light sensing proteins in bacteria, which use biliverdin as a chromophore. In order to study the biochemical properties of the DrBphP protein, five (2B8, 2C11, 3B2, 3D2, and 3H7) anti‐DrBphP monoclonal antibodies were produced through the immunization of mice with purified full‐length DrBphP and DrBphN (1–321 amino acid) proteins, and epitope mapping was then carried out. Among the five antibodies, 2B8 and 2C11 preferentially recognized the N‐terminal region of BphP whereas 3B2, 3D2, and 3H7 showed preference for the C‐terminal region. We performed further epitope mapping using recombinant truncated BphP proteins to narrow down their target sequences. The results demonstrated that each of the five monoclonal antibodies recognized different regions on the DrBphP protein. Additionally, epitopes of 2B8 and 3H7 antibodies were discovered to be shorter than 10 amino acids (2B8: RDPLPFFPP, 3H7: PGEIEEA). These two antibodies with such specific recognition epitopes could be especially valuable for developing new peptide tags for protein detection and purification.  相似文献   

15.
A surface plasmon resonance (SPR) sensor probe with integrated reference surface is described. In order to fabricate the integrated reference surface, two dielectric layers with different thickness were deposited on the single gold SPR sensor surface via plasma polymerization of hexamethyldisiloxane. The working sensor surface was a 34 nm dielectric layer with immobilized bovine serum albumin (BSA) antigen and an adjacent thin 1 nm dielectric layer without BSA provided reference surface. A specific immunoreaction of anti-BSA antibody was detected after immersion of the SPR probe into sample solution. Simultaneous observation of reference and working surface response enabled determination of the immunoreaction without the need for the baseline measurement. Moreover, compensation of nonspecific adsorption could be confirmed using anti-human serum albumin antibody.  相似文献   

16.
Surface plasmon resonance (SPR) technique was used to directly detect an intact form of insect pathogen: the baculovirus, Autographa californica multiple nuclear polyhedrosis virus (AcMNPV). An SPR sensor chip with three bio-functional layers was used to detect the intact AcMNPV: amine-reactive crosslinker with a disulfide bond that chemisorbs to gold film, Protein A, and a mouse IgG monoclonal antibody raised against a surface protein of the target viral pathogen. A two-channel (reference & test) micro-fluidic SPR system is used for reliable measurement. Bio-specific response to the AcMNPV is compared with the response for tobacco mosaic virus (TMV) as control. Successive exposure of the sensor chip to both viruses verifies a specific response to AcMNPV. This serves as a prerequisite to the development of a new type of viral pathogen detection sensors.  相似文献   

17.
Integrating surface plasmon resonance analysis with mass spectrometry allows detection and characterization of molecular interactions to be complemented with identification of interaction partners. We have developed a procedure for Biacore 3000 that automatically performs all steps from ligand fishing and recovery to sample preparation for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry including on-target digestion. In the model system used in this study a signal transduction protein, calmodulin, was selectively captured from brain extract by one of its interaction partners immobilized on a sensor chip. The bound material was eluted, deposited directly onto a MALDI target, and analyzed by mass spectrometry both as an intact protein and after on-target tryptic digestion. The procedure with direct deposition of recovered material on the MALDI target reduces sample losses and, in combination with automatic sample processing, increases the throughput of surface plasmon resonance mass spectrometry analysis.  相似文献   

18.
The determination of equilibrium binding constants is an important aspect of the analysis of protein-protein interactions. In recent years surface plasmon resonance experiments (e.g., with a BIAcore instrument) have provided a valuable experimental approach to determining such constants. The standard method is based on measuring amounts of analyte bound at equilibrium for different analyte concentrations. During the course of a typical surface plasmon resonance experiment the measured equilibrium levels for a given analyte concentration often decrease. This appears to be due to a loss of activity of the protein coupled to the sensor chip or other phenomena. The loss in signal can lead to an erroneous determination of the equilibrium constant. A data analysis approach is introduced that aims to compensate for the loss of activity so that its influence on the results of the experiments is reduced.  相似文献   

19.
Due to the enormous complexity of the proteome, focus in proteomics shifts more and more from the study of the complete proteome to the targeted analysis of part of the proteome. The isolation of this specific part of the proteome generally includes an affinity-based enrichment. Surface plasmon resonance (SPR), a label-free technique able to follow enrichment in real-time and in a semiquantitative manner, is an emerging tool for targeted affinity enrichment. Furthermore, in combination with mass spectrometry (MS), SPR can be used to both selectively enrich for and identify proteins from a complex sample. Here we illustrate the use of SPR-MS to solve proteomics-based research questions, describing applications that use very different types of immobilized components: such as small (drug or messenger) molecules, peptides, DNA and proteins. We evaluate the current possibilities and limitations and discuss the future developments of the SPR-MS technique.  相似文献   

20.
The incretin hormone glucagon‐like peptide‐1 (GLP‐1) has been subject to substantial pharmaceutical research regarding the treatment of type 2 diabetes mellitus. However, quantification of GLP‐1 levels remains complicated due to the low circulation concentration and concurrent existence of numerous metabolites, homologous peptides, and potentially introduced GLP‐1 receptor agonists. Surface plasmon resonance (SPR) facilitates real‐time monitoring allowing a more detailed characterisation of the interaction compared with conventional enzyme‐linked immunosorbent assays (ELISA). In this paper, we describe the development of the first SPR assays for characterisation of anti‐GLP‐1 antibodies for ELISA purposes. Binding responses were obtained on covalently immobilised anti‐GLP‐1 antibodies at 12°C, 25°C, and 40°C and fitted to a biomolecular (1:1) interaction model showing association rates of 1.01 × 103 to 4.54 × 103 M?1 s?1 and dissociation rates of 3.56 × 10?5 to 1.56 × 10?3 s?1 leading to affinities of 35.2 to 344 nM, depending on the temperature. Determination of thermodynamic properties revealed an enthalpy driven interaction (ΔH < ΔS < 0) with higher affinities at lower temperatures due to the formation and stabilisation of hydrogen bonds within the binding site primarily composed of polar amino acids (ΔCp < 0). Pair‐wise epitope mapping was performed on captured anti‐GLP‐1 antibodies followed by subsequent interaction with GLP‐1 (7‐36) and other anti‐GLP‐1 antibodies. A global evaluation of every binding response led to an epitope map elucidating the potential of various anti‐GLP‐1 antibody pairs for sandwich ELISA and hence pinpointing the optimal antibody combinations. The SPR assays proved capable of providing vital information for ELISA development endorsing it as a useful optimisation tool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号