首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method has been devised for observing both circadian and noncircadian rhythms in a single wild type strain of Neurospora crassa. This method allows a direct comparison of the properties of the two types of rhythm. The circadian rhythm of conidiation always entrains to a light-dark cycle, damps out in constant light, and has a temperature-compensated period length. The noncircadian rhythm of hyphal branching, expressed by the same strain under different environmental conditions, does not entrain to a light-dark cycle, persists in constant light, and its period length is temperature-dependent. These results suggest that the two rhythms have different underlying mechanisms and demonstrate that the differences in the rhythms previously observed in different strains (patch, band, and clock) are not due to genetic differences between these strains but rather are inherent properties of the rhythms themselves.  相似文献   

2.
The effects of 24 hr light-dark cycles on the circadian conidiation rhythm inNeurospora crassa were compared among will-typefrq + and clock mutantsfrq +,frq 3,frq 7,frq 9 andfrq 11. The minimum length of the light period necessary for complete entrainment to the light-dark cycles was almost 2 hr infrq +,frq 3 andfrq 7 strains. The minimum duration of the dark period necessary for the appearance of circadian conidiation was almost 4 hr in all of the strains except thefrq 11 strain. The phase of the conidiation rhythm was dependent on the light to dark transition in thefrq 1 strain in all light-dark cycles examined and in thefrq + andfrq 3 strains when the light period was shorter than 16 hr. In contrast, the phase of thefrq 7 strain was dependent on the light to dark transition when the light period was shorter than 10 hr.  相似文献   

3.
A new strain of Neurospora crassa which exhibits a rhythm of conidiation when growing along an agar surface in a growth tube is described. The rhythm has been shown to be circadian for it meets the following criteria: A) the period under constant environmental conditions in the dark is about 24 hours (22.7 hours at 25 degrees ); B) the period is relatively temperature-independent (Q(10) is between 0.95 and 1.21 for temperature range of 18 to 35 degrees ); C) the rhythm persists in continuous darkness at constant temperature for a minimum of 14 days without damping out; and D) the phase of the rhythm can be shifted by a single brief exposure to light. The sensitivity of this strain to light has been demonstrated further by the entrainment of the rhythm to a period of 24.0 hours using a suitable light-dark regime, and by the inhibition by light of the appearance of a rhythm; i.e., continuous conidiation occurs when the strain is subjected to continuous light. The new strain is compared to 2 other strains of Neurospora which also express a rhythm, patch and clock.  相似文献   

4.
The aim of the current investigation was to study the effect of lithium on circadian rhythms of pineal - testicular hormones by quantitations of pineal and serum serotonin, N-acetylserotonin and melatonin, and serum testosterone at four time points (06.00, 12.00, 18.00 and 24.00) of a 24-hr period under normal photoperiod (L:D), reversed photoperiod (D:L), constant light (L:L) and constant dark phase (D:D) in rats. Circadian rhythms were observed in pineal hormones in all the combinations of photoperiodic regimens, except in constant light, and in testosterone levels in all the photoperiodic combinations. Pineal and serum N-acetylserotonin and melatonin levels were higher than serotonin at night (24.00 hr), in natural L:D cycle, in reversed L:D cycle or similar to normal L:D cycle in constant dark phase, without any change in constant light. In contrast, testosterone level was higher in light phase (12.00 hr through 18.00 hr) than in the dark phase (24.00 hr through 06.00 hr) in normal L:D cycle, in reversed L:D cycle, similar to normal L:D cycle in constant dark (D:D), and reversed to that of the normal L:D cycle in constant light (L:L). Lithium treatment (2 mEq/kg body weight daily for 15 days) suppressed the magnitude of circadian rhythms of pineal and serum serotonin, N-acetylserotonin and melatonin, and testosterone levels by decreasing their levels at four time points of a 24-hr period in natural L:D or reversed D:L cycle and in constant dark (D:D). Pineal indoleamine levels were reduced after lithium treatment even in constant light (L:L). Moreover, lithium abolished the melatonin rhythms in rats exposed to normal (L:D) and reversed L:D (D:L) cycles, and sustained the rhythms in constant dark. But testosterone rhythm was abolished after lithium treatment in normal (L:D)/reversed L:D (D:L) cycle or even in constant light/dark. The findings indicate that the circadian rhythm exists in pineal hormones in alternate light - dark cycle (L:D/D:L) and in constant dark (D:D), but was absent in constant light phase (L:L) in rats. Lithium not only suppresses the circadian rhythms of pineal hormones, but abolishes the pineal melatonin rhythm only in alternate light - dark cycles, but sustains it in constant dark. The testosterone rhythm is abolished after lithium treatment in alternate light - dark cycle and constant light/dark. It is suggested that (a) normal circadian rhythms of pineal hormones are regulated by pulse dark phase in normal rats, (b) lithium abolishes pineal hormonal rhythm only in pulse light but sustains it in constant dark phase, and (c) circadian testosterone rhythm occurs in both pulse light or pulse dark phase in normal rats, and lithium abolishes the rhythm in all the combinations of the photoperiod. The differential responses of circadian rhythms of pineal and testicular hormones to pulse light or pulse dark in normal and lithium recipients are discussed.  相似文献   

5.
The period length of the circadian conidiation rhythm was examined in a mutant strain of Neurospora crassa, un-18, that is temperature sensitive for mycelial growth. The un-18 mutant showed a temperature-sensitive phenotype with respect to both mycelial growth and the period length of the conidiation rhythm. Below 22°?C, the un-18 mutation did not affect the period length, but at temperatures between 22°?C and 32°?C, the period length of the un-18 mutant was ~2 h longer than that of the wild-type strain. The un-18 + gene was cloned and was found to encode the second-largest subunit of RNA polymerase I, which is involved in the synthesis of rRNA. These results indicate that a defect in ribosome synthesis, which must result in a lower rate of protein synthesis, lengthens the period of the circadian conidiation rhythm in Neurospora.  相似文献   

6.
Neurospora crassa (bdA) mycelia were kept in liquid culture. Without rhythmic conidiation the levels of adenine nucleotides undergo circadian changes in constant darkness. Maxima occur 12-17 hr and 33-35 hr after initiation of the rhythm, i.e., at CT 0-6 hr. Pulses of metabolic inhibitors such as vanadate (Na3Vo4), molybdate (Na2MoO4: 2 H2O), N-ethylmaleimide (NEM), azide (NaN3), cyanide (NaCN) and oligomycin phase shift the circadian conidiation rhythm of Neurospora crassa. Maximal advance phase shifts are observed at about CT 6 with all inhibitors.

Pulses of N,N'dicyclohexylcarbodiimide (DCCD) and light phase shift the conidiation rhythm following a phase response curve different from those of the other agents (maximal advance at about CT 18-24). The phase shifts with DCCD and light are significantly larger in the wild type compared to the mitochrondrial mutant poky. Such differences are not found in PRCs of the protein synthesis inhibitor cycloheximide.

[31P] NMR spectra of wild type Neurospora crassa and the clock mutants frq 1 and frq 7 which differ in their circadian period lengths did not reveal differences in the concentrations of adenine nucleotides, pyridine nucleotides or sugar phosphates. Starvation causes drastic changes of the levels of adenine nucleotides, phosphate and mobile polyphosphate without effecting phase or period length of the circadian rhythm.  相似文献   

7.
Abstract

A study was made on the developmental rhythms of Ephestia kuehniella during different photoperiods: constant lighting (L/L), under conditions of 12 hours light per day (L/D) and in constant darkness (D/D). Observations were made every 2 hrs, for 3 successive 24‐hr periods, of the number of wandering larvae emerging from food, the number of pupations and of imaginai moults. Emergence of wandering larvae is rhythmic only under L/D conditions, and in addition this is also affected by the density of the larvae. Rhythm is least apparent with greatest density of the larvae. Pupation in E. kuehniella is a non‐rhythmic process with each of the photoperiods examined, whereas the imaginai moult is characterized by an endogenous (existing under D/D conditions) rhythm. Emergence of imagines is non‐rhythmic under L/L, and also when pupae under L/D fail to receive the final period of darkness. The rhythm of the imaginai moult is possibly controlled by the biological clock, which stops under conditions of constant light.  相似文献   

8.
The locomotor activity rhythms were examined by using an actograph with infra-red photo-electric switches for two species of wrasses, (Halichoeres tenuispinnis andPteragogus flagellifera) under various light conditions. InH. tenuispinnis, the locomotor activity of almost all fish under light-dark cycle regimen (LD12:12; 06:00–18:00 light, 18:00–06:00 dark) commenced somewhat earlier than the beginning of light period and continued till somewhat earlier than the beginning of the dark period. This species clearly showed free-running activity rhythms under both constant illumination (LL) and constant darkness (DD). Therefore,H. tenuispinnis appeared to have a circadian rhythm. The length of the circadian period ranged from 23 hr. 30 min. to 23 hr. 44 min. under LL, and was from 23 hr. 39 min. to 24 hr. 18 min. under DD. On the other hand, the locomotor activity ofP. flagellifera occurred mostly in the light period under LD 12:12. The activity of this species continued through LL, but was greatly suppressed in DD, so that none of the fish had any activity rhythm in both constant conditions. It was known from field observations thatH. tenuispinnis burrowed and lay in sandy bottoms, whileP. flagellifera hid and rested in bases of seagrasses and shallow crevices of rocks during the night. In the present two wrasses, it seemed that the above-mentioned difference of noctural behavior was closely related to the intensity of the endogenous factor in the activity rhythm.  相似文献   

9.
K. Onai  H. Nakashima 《Genetics》1997,146(1):101-110
Ten cysteine auxotrophs of Neurospora crassa were examined with regard to the period lengths of their circadian conidiation rhythms. One of the these cysteine auxotrophs, cys-9, showed dramatic changes in the circadian conidiation rhythm. At 10 μM methionine, the cys-9 mutant had a period length that was 5 hr shorter than that of the wild-type strain during the first 3 days after transfer to continuous darkness. At this concentration of methionine, the period length was unstable after the fourth day and varied widely from 11 to 31 hr. In contrast, other cysteine auxotrophs did not show such instability of the period length at any of the concentrations of methionine tested. Furthermore, only the cys-9 mutant exhibited partial loss of the capacity for temperature compensation of the period length. With regard to cold-induced phase-shifting of the circadian conidiation rhythm, the cys-9 mutant was more sensitive than the wild-type strain to low temperature. The cys-9(+) gene was cloned and was found to encode NADPH-dependent thioredoxin reductase. These results indicate that mutation of the gene for thioredoxin reductase results in abnormal expression of the circadian conidiation rhythm in N. crassa.  相似文献   

10.
Abstract

The Locomotory activity of the Plains Garter snake was determined under L/D: 12/12 conditions at five constant temperatures and three light intensities during the light period. The snakes were diurnal at low temperatures with nocturnal activity increasing in various amounts at higher temperatures. The different light intensities had relatively small effects on the activity rhythm.

Activity was recorded under four constant light conditions at five constant temperatures and the characteristics of the free‐running rhythm measured. A comparison of the characteristics of the free‐running rhythm to Aschoff's circadian rule indicates that this snake is an exception to this rule.

Increase light intensity decreased total activity under all conditions. Under a L/D: 12/12 cycle the decrease in activity was more pronounced during the dark period than the light period.

It is suggested that crepuscular or nocturnal activity shown by snakes at high temperatures may be an effect the temperature level has on the biological clock and activity controlling mechanisms rather than temperature selection by the snake.  相似文献   

11.
Cultures of Gonyaulax polyedra Stein maintained in the laboratory for 15 to 20 years, including an axenic strain isolated in 1960, have gradually lost the ability to survive in darkness. G. polyedra (70A), isolated in 1970 and maintained in a 12:12 light:dark cycle, now tolerates continuous darkness for a much shorter time than a strain isolated in 1981. I have compared the properties of strain 70A with those of this newer strain (81N), to investigate changes in Gonyaulax with length of time in culture, which may account for poor survival in darkness. When grown in continuous light (13, 12, or 4.5 watts per square meter), strains 70A and 81N have similar growth rates, yields, cell diameters, protein contents, C/N ratios, respiration rates, pigment complements, and photosynthetic rates. When entrained by a light:dark cycle (12L:12D), 70A showed no photosynthesis rhythm, although such a rhythm was formerly present. However, the circadian rhythms in bioluminescence and cell division were normal in both strains. Thus, the circadian clock is apparently still intact in 70A as in 81N. The rate of photosynthesis in strain 70A was constant at a low level, the consequent smaller accumulation of photosynthetic products probably accounting for the limited survival in darkness. The defect in strain 70A may be the loss of a component either directly affecting Pmax or necessary for transduction from the circadian clock to photosynthesis.  相似文献   

12.
Neurospora crassa (bdA) mycelia were kept in liquid culture. Without rhythmic conidiation the levels of adenine nucleotides undergo circadian changes in constant darkness. Maxima occur 12-17 hr and 33-35 hr after initiation of the rhythm, i.e., at CT 0-6 hr. Pulses of metabolic inhibitors such as vanadate (Na3Vo4), molybdate (Na2MoO4: 2 H2O), N-ethylmaleimide (NEM), azide (NaN3), cyanide (NaCN) and oligomycin phase shift the circadian conidiation rhythm of Neurospora crassa. Maximal advance phase shifts are observed at about CT 6 with all inhibitors.

Pulses of N,N'dicyclohexylcarbodiimide (DCCD) and light phase shift the conidiation rhythm following a phase response curve different from those of the other agents (maximal advance at about CT 18-24). The phase shifts with DCCD and light are significantly larger in the wild type compared to the mitochrondrial mutant poky. Such differences are not found in PRCs of the protein synthesis inhibitor cycloheximide.

[31P] NMR spectra of wild type Neurospora crassa and the clock mutants frq 1 and frq 7 which differ in their circadian period lengths did not reveal differences in the concentrations of adenine nucleotides, pyridine nucleotides or sugar phosphates. Starvation causes drastic changes of the levels of adenine nucleotides, phosphate and mobile polyphosphate without effecting phase or period length of the circadian rhythm.  相似文献   

13.
The fungus Neurospora crassa is a model organism for investigating the biochemical mechanism of circadian (daily) rhythmicity. When a choline-requiring strain (chol-1) is depleted of choline, the period of the conidiation rhythm lengthens. We have found that the levels of sn-1,2-diacylglycerol (DAG) increase in proportion to the increase in period. Other clock mutations that change the period do not affect the levels of DAG. Membrane-permeant DAGs and inhibitors of DAG kinase were found to further lengthen the period of choline-depleted cultures. The level of DAG oscillates with a period comparable to the rhythm of conidiation in wild-type strains, choline-depleted cultures, and frq mutants, including a null frq strain. The DAG rhythm is present at the growing margin and also persists in older areas that have completed development. The phase of the DAG rhythm can be set by the light-to-dark transition, but the level of DAG is not immediately affected by light. Our results indicate that rhythms in DAG levels in Neurospora are driven by a light-sensitive circadian oscillator that does not require the frq gene product. High levels of DAG may feed back on that oscillator to lengthen its period.  相似文献   

14.
Ulva lactuca L. var. latissima (L.) DeCandolle has a circadian rhythm of visible light transmittance change which is caused by chloroplast orientation. With a continuously recording microphotometer system, clear rhythms could be monitored for up to 10 days. Measuring beam intensity effects on the free running period were seen down to 10−7 w cm−2. While these effects complicate the measuring process, they demonstrate that Ulva is very sensitive to light. The free running period in constant darkness at 20 C is 24 to 25 hours. The position in the cell occupied by the chloroplasts when the rhythm damps out can be influenced by light. A method is described by which the times of rhythm maxima can be calculated accurately and objectively from a relatively small number of points.  相似文献   

15.
Four new circadian clock mutants of Neurospora crassa have been isolated that alter the period length of the circadian conidiation rhythm. Three of these are at the frq locus on linkage group VIIR, where four other clock mutants are located. In contrast to wild type, which has a period length of 21.6 hr, frq-6 has a period length of 19 hr, while frq-7 and frq-8 have period lengths of 29 hr and represent the largest effects of any single gene mutants on circadian periodicity. Thus, seven mutants have now been isolated that map to the frq locus, with period lengths ranging from 16.5 to 29 hr, and each mutant alters clock periodicity by an integral multiple of 2.5 hr. In addition, all frq mutants show incomplete dominance in heterokaryons. The large percentage of clock mutants that map to this locus, coupled with their unique properties, suggests that the frq locus plays an important role in clock organization.—The fourth mutant, designated chrono (chr), has a period length of 23.5 hr, shows incomplete dominance and is unlinked to either of the previously identified clock loci, frq or prd (formerly called frq-5). Double mutants between various combinations of clock mutants show additive effects and indicate no significant gene interaction among mutants at these three loci.  相似文献   

16.
We are using the fungus Neurospora crassa as a model organism to study the circadian system of eukaryotes. Although the FRQ/WCC feedback loop is said to be central to the circadian system in Neurospora, rhythms can still be seen under many conditions in FRQ-less (frq knockout) strains. To try to identify components of the FRQ-less oscillator (FLO), we carried out a mutagenesis screen in a FRQ-less strain and selected colonies with altered conidiation (spore-formation) rhythms. A mutation we named UV90 affects rhythmicity in both FRQ-less and FRQ-sufficient strains. The UV90 mutation affects FRQ-less rhythms in two conditions: the free-running long-period rhythm in choline-depleted chol-1 strains becomes arrhythmic, and the heat-entrained rhythm in the frq(10) knockout is severely altered. In a FRQ-sufficient background, the UV90 mutation causes damping of the free-running conidiation rhythm, reduction of the amplitude of the FRQ protein rhythm, and increased phase-resetting responses to both light and heat pulses, consistent with a decreased amplitude of the circadian oscillator. The UV90 mutation also has small but significant effects on the period of the conidiation rhythm and on growth rate. The wild-type UV90 gene product appears to be required for a functional FLO and for sustained, high-amplitude rhythms in FRQ-sufficient conditions. The UV90 gene product may therefore be a good candidate for a component of the FRQ-less oscillator. These results support a model of the Neurospora circadian system in which the FRQ/WCC feedback loop mutually interacts with a single FLO in an integrated circadian system.  相似文献   

17.
Efforts to significantly perturb the timing mechanism, and thus the period, of the rhythm responsible for circadian conidiation in bd, a strain of Neurospora crassa, by altering the medium composition have been unsuccessful. Various salt solutions, sugars, and amino acids do, however, have pronounced effects on growth and conidiation, and thus on the expression and persistence of rhythmicity.  相似文献   

18.
Eclosion rhythm parameters of D. ananassae strains originating between 8 degrees-34 degrees N were highly variable and latitude dependent. In the field under naturally fluctuating light intensity, temperature and R.H., the amplitude of the rhythm was high and the eclosion gate was narrow; however, under the naturally fluctuating light intensity but at constant temperature and R.H., the amplitude of the rhythm was lowered and the width of eclosion gate was widened. The eclosion rhythm entrained to light-dark (LD) cycles ranging from LD 6:18 to LD 18:6, the width of the eclosion gate was decreased and increased in the short and long photoperiods respectively. Among the strains, both the phase angle difference (psi, the time from lights-off in a 24 hr LD cycle to the eclosion median) and the period of free-running rhythm (tau) in constant darkness varied by about 3 hr and the amplitude of the rhythmicity (Amp) by about 10%. Lower latitude was correlated with late psi (r = -0.69), long tau (r = -0.88) and high Amp value (r = -0.95).  相似文献   

19.
S. Suzuki  S. Katagiri    H. Nakashima 《Genetics》1996,143(3):1175-1180
Two newly isolated mutant strains of Neurospora crassa, cpz-1 and cpz-2, were hypersensitive to chlorpromazine with respect to mycelial growth but responded differently to the drug with respect to the circadian conidiation rhythm. In the wild type, chlorpromazine caused shortening of the period length of the conidiation rhythm. Pulse treatment with the drug shifted the phase and inhibited light-induced phase shifting in Neurospora. By contrast to the wild type, the cpz-2 strain was resistant to these inhibitory effects of chlorpromazine. Inhibition of cpz-2 function by chlorpromazine affected three different parameters of circadian conidiation rhythm, namely, period length, phase and light-induced phase shifting. These results indicate that the cpz-2 gene must be involved in or related closely to the clock mechanism of Neurospora. By contrast, the cpz-1 strain was hypersensitive to chlorpromazine with respect to the circadian conidiation rhythm.  相似文献   

20.
Several different environmental signals can induce asexual spore development (conidiation) and expression of developmentally regulated genes in Neurospora crassa. However, under constant conditions, where no environmental cues for conidiation are present, the endogenous circadian clock in N. crassa promotes daily rhythms in expression of known developmental genes and of conidiation. We anticipated that the same pathway of gene regulation would be followed during clock-controlled conidiation and environmental induction of conidiation and that the circadian clock would need only to control the initial developmental switch. Previous experiments showed that high-level developmental induction of the clock-controlled genes eas (ccg-2) and ccg-1 requires the developmental regulatory proteins FL and ACON-2, respectively, and normal developmental induction of fl mRNA expression requires ACON-2. We demonstrate that the circadian clock regulates rhythmic fl gene expression and that fl rhythmicity requires ACON-2. However, we find that clock regulation of eas (ccg-2) is normal in an fl mutant strain and ccg-1 expression is rhythmic in an acon-2 mutant strain. Together, these data point to the endogenous clock and the environment following separate pathways to regulate conidiation-specific gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号