首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Assembly of the amyloid beta-protein (Abeta) into neurotoxic oligomers and fibrils is a seminal event in Alzheimer's disease. Understanding the earliest phases of Abeta assembly, including prenucleation and nucleation, is essential for the development of rational therapeutic strategies. We have applied a powerful new method, photoinduced cross-linking of unmodified proteins (PICUP), to the study of Abeta oligomerization. Significant advantages of this method include an extremely short reaction time, enabling the identification and quantification of short lived metastable assemblies, and the fact that no pre facto structural modification of the native peptide is required. Using PICUP, the distribution of Abeta oligomers existing prior to assembly was defined. A rapid equilibrium was observed involving monomer, dimer, trimer, and tetramer. A similar distribution was seen in studies of an unrelated amyloidogenic peptide, whereas nonamyloidogenic peptides yielded distributions indicative of a lack of monomer preassociation. These results suggest that simple nucleation-dependent polymerization models are insufficient to describe the dynamic equilibria associated with prenucleation phases of Abeta assembly.  相似文献   

2.
Actin-fragmin interactions as revealed by chemical cross-linking   总被引:6,自引:0,他引:6  
K Sutoh  S Hatano 《Biochemistry》1986,25(2):435-440
A one to one complex of actin and fragmin (a capping protein from Physarum polycephalum plasmodia) was cross-linked with 1-ethyl-3-[3-(dimethylamino)propyl] carbodiimide. The cross-linking reaction generated two cross-linked products with slightly different molecular weights (88 000 and 90 000) as major species. They were cross-linked products of one actin and one fragmin. The cross-linking site of fragmin in the actin sequence was determined by peptide mappings [Sutoh, K. (1982) Biochemistry 21, 3654-3661] after partial chemical cleavages of cross-linked products with hydroxylamine. The results indicated that the N-terminal segment of actin spanning residues 1-12 participated in cross-linking with fragmin. The cross-linker used in this study covalently bridges lysine side chains and side chains of acidic residues when they are in direct contact. Therefore, it seems that acidic residues in the N-terminal segment of actin (Asp-1, Glu-2, Asp-3, Glu-4, and Asp-11), at least some of them, are in the binding site of fragmin. It has already been shown that the same acidic segment of actin is in the binding site of myosin or depactin (an actin-depolymerizing protein isolated from starfish oocytes). We suggest that the unusual amino acid sequence of the N-terminal segment of actin makes its N-terminal region a favorable anchoring site for various types of actin-binding proteins.  相似文献   

3.
The aggregation and fibrillation of alpha-synuclein has been implicated as a causative factor in Parkinson's disease and several other neurodegenerative disorders known as synucleinopathies. The effect of different factors on the process of fibril formation has been intensively studied in vitro. We show here that alpha-synuclein interacts with different unstructured polycations (spermine, polylysine, polyarginine, and polyethyleneimine) to form specific complexes. In addition, the polycations catalyze alpha-synuclein oligomerization. The formation of alpha-synuclein-polycation complexes was not accompanied by significant structural changes in alpha-synuclein. However, alpha-synuclein fibrillation was dramatically accelerated in the presence of polycations. The magnitude of the accelerating effect depended on the nature of the polymer, its length, and concentration. The results illustrate the potential critical role of electrostatic interactions in protein aggregation, and the potential role of naturally occurring polycations in modulating alpha-synuclein aggregation.  相似文献   

4.
Wan OW  Chung KK 《PloS one》2012,7(6):e38545
α-Synuclein (α-syn) is a synaptic protein in which four mutations (A53T, A30P, E46K and gene triplication) have been found to cause an autosomal dominant form of Parkinson's disease (PD). It is also the major component of intraneuronal protein aggregates, designated as Lewy bodies (LBs), a prominent pathological hallmark of PD. How α-syn contributes to LB formation and PD is still not well-understood. It has been proposed that aggregation of α-syn contributes to the formation of LBs, which then leads to neurodegeneration in PD. However, studies have also suggested that aggregates formation is a protective mechanism against more toxic α-syn oligomers. In this study, we have generated α-syn mutants that have increased propensity to form aggregates by attaching a CL1 peptide to the C-terminal of α-syn. Data from our cellular study suggest an inverse correlation between cell viability and the amount of α-syn aggregates formed in the cells. In addition, our animal model of PD indicates that attachment of CL1 to α-syn enhanced its toxicity to dopaminergic neurons in an age-dependent manner and induced the formation of Lewy body-like α-syn aggregates in the substantia nigra. These results provide new insights into how α-syn-induced toxicity is related to its aggregation.  相似文献   

5.
The HIV proviral genome contains two copies of a 16 bp homopurine.homopyrimidine sequence which overlaps the recognition and cleavage site of the Dra I restriction enzyme. Psoralen was attached to the 16-mer homopyrimidine oligonucleotide, d5'(TTTTCT-TTTCCCCCCT)3', which forms a triple helix with this HIV proviral sequence. Two plasmids, containing part of the HIV proviral DNA, with either one (pLTR) or two (pBT1) copies of the 16-bp homopurine.homopyrimidine sequence and either 4 or 14 Dra I cleavage sites, respectively, were used as substrates for the psoralen-oligonucleotide conjugate. Following UV irradiation the two strands of the DNA targeted sequence were cross-linked at the triplex-duplex junction. The psoralen-oligonucleotide conjugate selectively inhibited Dra I enzymatic cleavage at sites overlapping the two triple helix-forming sequences. A secondary triplex-forming site of 8 contiguous base pairs was observed on the pBT1 plasmid when binding of the 16 base-long oligonucleotide was allowed to take place at high oligonucleotide concentrations. Replacement of a stretch of six cytosines in the 16-mer oligomer by a stretch of six guanines increased binding to the primary sites and abolished binding to the secondary site under physiological conditions. These results demonstrate that oligonucleotides can be designed to selectively recognize and modify specific sequences in HIV proviral DNA.  相似文献   

6.
The mechanisms that govern the formation of alpha-synuclein (alpha-syn) aggregates are not well understood but are considered a central event in the pathogenesis of Parkinson's disease (PD). A critically important modulator of alpha-syn aggregation in vitro is dopamine and other catechols, which can prevent the formation of alpha-syn aggregates in cell-free and cellular model systems. Despite the profound importance of this interaction for the pathogenesis of PD, the processes by which catechols alter alpha-syn aggregation are unclear. Molecular and biochemical approaches were employed to evaluate the mechanism of catechol-alpha-syn interactions and the effect on inclusion formation. The data show that the intracellular inhibition of alpha-syn aggregation requires the oxidation of catechols and the specific noncovalent interaction of the oxidized catechols with residues (125)YEMPS(129) in the C-terminal region of the protein. Cell-free studies using novel near infrared fluorescence methodology for the detection of covalent protein-ortho-quinone adducts showed that although covalent modification of alpha-syn occurs, this does not affect alpha-syn fibril formation. In addition, oxidized catechols are unable to prevent both thermal and acid-induced protein aggregation as well as fibrils formed from a protein that lacks a YEMPS amino acid sequence, suggesting a specific effect for alpha-syn. These results suggest that inappropriate C-terminal cleavage of alpha-syn, which is known to occur in vivo in PD brain or a decline of intracellular catechol levels might affect disease progression, resulting in accelerated alpha-syn inclusion formation and dopaminergic neurodegeneration.  相似文献   

7.
The alpha-synuclein is a major component of Lewy bodies that are found in the brains of patients with Parkinson's disease (PD). Also, two point mutations in this protein, A53T and A30P, are associated with rare familial forms of the disease. We investigated whether there are differences in the Cu,Zn-SOD and hydrogen peroxide system mediated-protein modification between the wild-type and mutant alpha-synucleins. When alpha-synuclein was incubated with both Cu,Zn-SOD and H2O2, then the amount of A53T mutant oligomerization increased relative to that of the wild-type protein. This process was inhibited by radical scavenger, spin-trapping agent, and copper chelator. These results suggest that the oligomerization of alpha-synuclein is mediated by the generation of the hydroxyl radical through the metal-catalyzed reaction. The dityrosine formation of the A53T mutant protein was enhanced relative to that of the wild-type protein. Antioxidant molecules, carnosine, and anserine effectively inhibited the wild-type and mutant proteins' oligomerization. Therefore, these compounds may be explored as potential therapeutic agents for PD patients. The present experiments, in part, may provide an explanation for the association between PD and the alpha-synuclein mutant.  相似文献   

8.
Four early events of egg fertilization, changes in intracellular calcium concentration and intracellular pH, reorientation of the surface membrane, and the elevation of the fertilization envelope, were imaged in real time and in pairs in single sea urchin eggs. The paired imaging allowed the correlation of the four events spatially and temporally. Three of them propagated as waves starting at the sperm entry site. The earliest was the calcium wave, visualized with fluorescent indicator dyes. After a delay of 10 s there followed a large decrease in the fluorescence polarization of membrane-bound dyes, which we interpret as arising from membrane reorientation as a result of cortical granule exocytosis and microvillar elongation. With a further delay of 15 s the fertilization envelope was seen to rise in transmitted light. All three waves propagated with similar velocities of approximately 10 microns/s, supporting the view that calcium triggers the latter two events. The fluorescence polarization changed in two steps with a clear pause of 10-20 s in between. The second step, which also propagated as wave, reflects either further elongation of microvilli or straightening of irregular microvilli. This second step was abolished by cytochalasin B and was coincident with an increase in cytoplasmic pH, suggesting that pH-induced actin reorganization may play a role. The cytoplasmic alkalinization, imaged with a fluorescent probe, was quite different from the other events in that it took place homogeneously throughout the egg and slowly (over 100 s). Apparently, the alkalinization is not on a direct downstream pathway of calcium origin. An opposing possibility, that the alkalinization may in fact be triggered by the traveling calcium wave, is also discussed.  相似文献   

9.
alpha-Synuclein is a major component of the fibrillary lesion known as Lewy bodies and Lewy neurites that are the pathologic hallmarks of Parkinson's disease (PD). In addition, point mutations in the alpha-synuclein gene imply alpha-synuclein dysfunction in the pathology of inherited forms of PD. alpha-Synuclein is a member of a family of proteins found primarily in the brain and is concentrated within presynaptic terminals. Here, we address the localization and membrane binding characteristics of wild type and PD mutants of alpha-synuclein in cultured cells. In cells treated with high concentrations of fatty acids, wild type alpha-synuclein accumulated on phospholipid monolayers surrounding triglyceride-rich lipid droplets and was able to protect stored triglycerides from hydrolysis. PD mutant synucleins showed variable distributions on lipid droplets and were less effective in regulating triglyceride turnover. Chemical cross-linking demonstrated that synuclein formed small oligomers within cells, primarily dimers and trimers, that preferentially associated with lipid droplets and cell membranes. Our results suggest that the initial phases of synuclein aggregation may occur on the surfaces of membranes and that pathological conditions that induce cross-linking of synuclein may enhance the propensity for subsequent synuclein aggregation.  相似文献   

10.
Lin XJ  Zhang F  Xie YY  Bao WJ  He JH  Hu HY 《Biopolymers》2006,83(3):226-232
Alpha-synuclein (alpha-Syn) has been identified as a component of intracellular fibrillar deposits in Parkinson's disease. Though the real pathogenesis is still unknown, many investigations have revealed that conformational alteration and fibril formation of alpha-Syn protein have an important role in causing the disease. In this work, we introduced the g-factor spectra of solid-state circular dichroism to estimate the secondary structure contents of alpha-Syn fragments in amyloids. Fourier-transform infrared (FTIR) was also applied to confirm the structural formation. The results suggest that the central hydrophobic region is critical for beta-sheet formation and the conformational alteration is the foundation of protein abnormal aggregation. The research provides a practical approach to estimate the secondary structure contents of protein amyloids and further insight into the relevance of structural transformation and amyloidogenesis.  相似文献   

11.
Luk KC  Hyde EG  Trojanowski JQ  Lee VM 《Biochemistry》2007,46(44):12522-12529
Parkinson's disease (PD) is characterized by the accumulation of fibrillar alpha-synuclein (alpha-Syn) inclusions known as Lewy bodies (LBs) and Lewy neurites. Mutations in the alpha-Syn gene or extra copies thereof cause familial PD or dementia with LBs (DLB) in rare kindreds, but abnormal accumulations of wildtype alpha-Syn also are implicated in the pathogenesis of sporadic PD, the most common movement disorder. Insights into mechanisms underlying alpha-Syn mediated neurodegeneration link alpha-Syn oligomerization and fibrillization to the onset and progression of PD. Thus, inhibiting alpha-Syn oligomer or fibril formation is a compelling target for discovering disease modifying therapies for PD, DLB, and related synucleinopathies. Although amyloid dyes recognize alpha-Syn fibrils, efficient detection of soluble oligomers remains a challenge. Here, we report a novel fluorescence polarization (FP) technique for examining alpha-Syn assembly by monitoring changes in its relative molecular mass during progression of normal alpha-Syn from highly soluble monomers to higher order multimers and thence insoluble amyloid fibrils. We report that FP is more sensitive than conventional amyloid dye methods for the quantification of mature fibrils, and that FP is capable of detecting oligomeric alpha-Syn, allowing for rapid automated screening of potential inhibitors of alpha-Syn oligomerization and fibrillization. Furthermore, FP can be combined with an amyloid dye in a single assay that simultaneously provides two independent biophysical readouts for monitoring alpha-Syn fibrillization. Thus, this FP method holds potential to accelerate discovery of disease modifying therapies for LB PD, DLB, and related neurodegenerative synucleinopathies.  相似文献   

12.
CD22 is a negative regulator of B-cell receptor signaling, an activity mediated by recruitment of SH2 domain-containing phosphatase 1 through a phosphorylated immunoreceptor tyrosine inhibitory motif in its cytoplasmic domain. As in other members of the sialic acid-binding immunoglobulin-like lectin, or siglec, family, the extracellular N-terminal immunoglobulin domain of CD22 binds to glycan ligands containing sialic acid, which are highly expressed on B-cell glycoproteins. B-cell glycoproteins bind to CD22 in cis and 'mask' the ligand-binding domain, modulating its activity as a regulator of B-cell signaling. To assess cell-surface cis ligand interactions, we developed a new method for in situ photoaffinity cross-linking of glycan ligands to CD22. Notably, CD45, surfaceIgM (sIgM) and other glycoproteins that bind to CD22 in vitro do not appear to be important cis ligands of CD22 in situ. Instead, CD22 seems to recognize glycans of neighboring CD22 molecules as cis ligands, forming homomultimeric complexes.  相似文献   

13.
Purified Sindbis virus nucleocapsids were reacted with a variety of bifunctional protein-specific cross-linking agents. The products were analyzed in concentration-gradient polyacrylamide gels and amounts of various products determined. These studies indicated that available lysine residues within adjacent capsid proteins in purified intact nucleocapsids are separated by 6 A. The capsid proteins in intact nucleocapsids are cross-linked in a pattern predicted for discrete monomeric entities, rather than in dimeric or trimeric aggregates. Purified, soluble capsid protein exists in a conformation that differs from the arrangement of protein within nucleocapsids. These conformational differences suggest that topological changes may occur in the capsid protein during virus maturation. Cross-linked nucleocapsids that were treated with RNases resulted in the generation of RNA-free protein shells that retained hexagonal morphology, indicating that, together, the RNA and protein form the outer surface of the nucleocapsid. These data are used to produce a model of the Sindbis virus nucleocapsid in which the proteins are arranged quasi-equivalently in a T = 4 icosahedral shell.  相似文献   

14.
Aggregation of alpha-synuclein is tightly associated with many neurodegenerative diseases, such as Parkinson's disease, dementia with Lewy body, Lewy body variant of Alzheimer's disease, multiple system atrophy, and Hallervorden-Spatz disease, implicating a crucial role of aggregated forms of alpha-synuclein in the pathogenesis. Here, we examined the effect of elevated temperature on the oligomerization and structural changes of alpha-synuclein in the early stage of aggregation and show that self-assembly is crucial for the stabilization of a partially folded conformation. The efficiency of alpha-synuclein oligomerization increased proportional to the temperature increase, both in purified form and in crude cytosolic preparation. This oligomerization coincided with a small but reproducible change in the circular dichroism spectrum and an increase in the 1-anilinonaphthalene-8-sulfonic acid binding. The hydrodynamic dimensions of the dimer measured by size exclusion chromatography suggest a pre-molten globule-like structure. These data suggest that partially folded alpha-synuclein, which is unstable in the monomeric form, is stabilized by self-assembly and that these oligomers may evolve into the fibril nucleus.  相似文献   

15.
Karube H  Sakamoto M  Arawaka S  Hara S  Sato H  Ren CH  Goto S  Koyama S  Wada M  Kawanami T  Kurita K  Kato T 《FEBS letters》2008,582(25-26):3693-3700
Exposure of alpha-synuclein (alphaS), a major component of Lewy bodies in Parkinson's disease, to polyunsaturated fatty acids (PUFAs) triggers the formation of soluble alphaS oligomers. Here, we demonstrate that PUFA binds recombinant alphaS protein through its N-terminal region (residues 2-60). In HEK293 cells, alphaS mutants lacking the N-terminal region failed to form oligomers in the presence of PUFA. The PUFA-induced alphaS oligomerization was accelerated by C-terminal truncation or Ser129 phosphorylation of alphaS; however, this effect was abolished by deletion of the N-terminus. The results indicate that the N-terminus of alphaS is essential for the PUFA-induced alphaS oligomerization.  相似文献   

16.
17.
Residues from several transmembrane (TM) segments of P-glycoprotein (P-gp) likely form the drug-binding site(s). To determine the organization of the TM segments, pairs of cysteine residues were introduced into the predicted TM segments of a Cys-less P-gp, and the mutant protein was subjected to oxidative cross-linking. In SDS gels, the cross-linked product migrated with a slower mobility than the native protein. The cross-linked products were not detected in the presence of dithiothreitol. Cross-linking was observed in 12 of 125 mutants. The pattern of cross-linking suggested that TM6 is close to TMs 10, 11, and 12, while TM12 is close to TMs 4, 5, and 6. In some mutants the presence of drug substrate colchicine, verapamil, cyclosporin A, or vinblastine either enhanced or inhibited cross-linking. Cross-linking was inhibited in the presence of ATP plus vanadate. These results suggest that the TM segments critical for drug binding must be close to each other and exhibit different conformational changes in response to binding of drug substrate or vanadate trapping of nucleotide. Based on these results, we propose a model for the arrangement of the TM segments.  相似文献   

18.
CC-chemokine receptor 5 (CCR5) is the principal coreceptor for macrophage-tropic strains of human immunodeficiency virus type 1 (HIV-1). We have generated a set of anti-CCR5 monoclonal antibodies and characterized them in terms of epitope recognition, competition with chemokine binding, receptor activation and trafficking, and coreceptor activity. MC-4, MC-5, and MC-7 mapped to the amino-terminal domain, MC-1 to the second extracellular loop, and MC-6 to a conformational epitope covering multiple extracellular domains. MC-1 and MC-6 inhibited regulated on activation normal T cell expressed and secreted (RANTES), macrophage inflammatory polypeptide-1beta, and Env binding, whereas MC-5 inhibited macrophage inflammatory polypeptide-1beta and Env but not RANTES binding. MC-6 induced signaling in different functional assays, suggesting that this monoclonal antibody stabilizes an active conformation of CCR5. Flow cytometry and real-time confocal microscopy showed that MC-1 promoted strong CCR5 endocytosis. MC-1 but not its monovalent isoforms induced an increase in the transfer of energy between CCR5 molecules. Also, its monovalent isoforms bound efficiently, but did not internalize the receptor. In contrast, MC-4 did not prevent RANTES binding or subsequent signaling, but inhibited its ability to promote CCR5 internalization. These results suggest the existence of multiple active conformations of CCR5 and indicate that CCR5 oligomers are involved in an internalization process that is distinct from that induced by the receptor's agonists.  相似文献   

19.
Interleukin (IL)-5 exerts hematopoietic functions through binding to the IL-5 receptor subunits, alpha and betac. Specific assembly steps of full-length subunits as they occur in cell membranes, ultimately leading to receptor activation, are not well understood. We tracked the oligomerization of IL-5 receptor subunits using fluorescence resonance energy transfer (FRET) imaging. Full-length IL-5Ralpha and betac were expressed in Phoenix cells as chimeric proteins fused to enhanced cyan or yellow fluorescent protein (CFP or YFP, respectively). A time- and dose-dependent increase in FRET signal between IL-5Ralpha-CFP and betac-YFP was observed in response to IL-5, indicative of heteromeric receptor alpha-betac subunit interaction. This response was inhibited by AF17121, a peptide antagonist of IL-5Ralpha. Substantial FRET signals with betac-CFP and betac-YFP co-expressed in the absence of IL-5Ralpha demonstrated that betac subunits exist as preformed homo-oligomers. IL-5 had no effect on this betac-alone FRET signal. Interestingly, the addition of IL-5 to cells co-expressing betac-CFP, betac-YFP, and nontagged IL-5Ralpha led to further increase in FRET efficiency. Observation of preformed betac oligomers fits with the view that this form can lead to rapid cellular responses upon IL-5 stimulation. The IL-5-induced effects on betac assembly in the presence of nontagged IL-5Ralpha provide direct evidence that IL-5 can cause higher order rearrangements of betac homo-oligomers. These results suggest that IL-5 and perhaps other betac cytokines (IL-3 and granulocyte/macrophage colony-stimulating factor) trigger cellular responses by the sequential binding of cytokine ligand to the specificity receptor (subunit alpha), followed by binding of the ligand-subunit alpha complex to, and consequent rearrangement of, a ground state form of betac oligomers.  相似文献   

20.
The organization of bovine heart NADH dehydrogenase in the mitochondrial inner membrane was investigated by chemical cross-linking and radiolabelling with [125I]iododiazobenzenesulphonate (IDABS). Mitochondria or submitochondrial particles were cross-linked with disulphosuccinimidyl tartrate and dimethyl suberimidate, and dimeric products containing subunits of the NADH dehydrogenase were analysed by Western blotting with subunit-specific antisera. Cross-linking of mitochondria gave rise to (49 + 30) kDa and (49 + 19) kDa dimers and an additional dimer containing the 30 kDa subunit. Cross-linking of submitochondrial particles gave rise to (75 + 51) kDa, (75 + 30) kDa and (49 + 13) kDa dimers and a further dimer containing the 30 kDa subunit. We conclude that the 49 kDa and 30 kDa subunits are transmembranous, the 19 kDa subunit is exposed on the cytoplasmic face of the membrane, whereas the 75, 51 and 13 kDa subunits are exposed on the matrix face of the membrane. Reaction of the isolated enzyme with IDABS results in labelling of 75, 49, 42, 33, 30, 13 and 10 kDa subunits. From experiments in which mitochondria or submitochondrial particles were first labelled and NADH dehydrogenase then isolated by immunoprecipitation, it was found that labelling of the 49 kDa subunit occurs predominantly from the cytoplasmic side of the membrane. On the other hand, labelling of the 75, 13 and 10 kDa subunits occurs predominantly from the matrix side of the membrane, whereas the 30 and 33 kDa subunits are heavily labelled from either side. These findings are consistent with those obtained from cross-linking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号