首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human cytomegalovirus (CMV) infection of bone marrow transplant recipients can cause pancytopenia, as well as life-threatening interstitial pneumonia. CMV replicates actively in bone marrow stromal cells, whereas it remains latent in hematopoietic progenitors. Our aim was to study the influence of CMV infection on adherence of CD34(+) cells to the myofibroblastic component of human bone marrow and examine transmission of virus from myofibroblasts to CD34(+) cells. We show that smooth actin, but not fibronectin, organization is markedly modified by CMV infection of bone marrow stromal myofibroblasts. Nonetheless, CMV infection led to increased adherence of the CD34(+) progenitor cell line, KG1a, relative to adherence to uninfected myofibroblasts from the same donors. Adherence of CD34(+) cells to infected bone marrow myofibroblasts resulted in transfer of virions and viral proteins through close cell-to-cell contacts. This phenomenon may play a role in the pathophysiology of CMV bone marrow infection and in eventual virus dissemination.  相似文献   

2.
The success of stem cell transplantation depends on the ability of i.v. infused stem cells to engraft the bone marrow, a process referred to as homing. Efficient homing requires migration of CD34(+) cells across the bone marrow endothelium, most likely through the intercellular junctions. In this study, we show that loss of vascular endothelial (VE)-cadherin-mediated endothelial cell-cell adhesion increases the permeability of monolayers of human bone marrow endothelial cells (HBMECs) and stimulates the transendothelial migration of CD34(+) cells in response to stromal cell-derived factor-1alpha. Stromal cell-derived factor-1alpha-induced migration was dependent on VCAM-1 and ICAM-1, even in the absence of VE-cadherin function. Cross-linking of ICAM-1 to mimic the leukocyte-endothelium interaction induced actin stress fiber formation but did not induce loss of endothelial integrity, whereas cross-linking of VCAM-1 increased the HBMEC permeability and induced gaps in the monolayer. In addition, VCAM-1-mediated gap formation in HBMEC was accompanied by and dependent on the production of reactive oxygen species. These data suggest that modulation of VE-cadherin function directly affects the efficiency of transendothelial migration of CD34(+) cells and that activation of ICAM-1 and, in particular, VCAM-1 plays an important role in this process through reorganization of the endothelial actin cytoskeleton and by modulating the integrity of the bone marrow endothelium through the production of reactive oxygen species.  相似文献   

3.
Minced human tonsils were digested with DNase and collagenase, and lymphoid cell-depleted low density cells were cultured and grown in granulocyte-macrophage-CSF. Large, morphologically homogenous adherent cells with elongated extensions grew continuously in culture. These nonphagocytic cells appear to be related to follicular dendritic cell (FDC) as they do not have properties of monocytic lineage cells or dendritic cells and because, like FDC, 1) they express CD11b, CD14, CD29, CD40, CD54, CD73, CD74, and VCAM-1, and do not express CD11c, CD22, T cell markers, CD18, CD25 and CD45; and 2) they bind human B lymphocytes and B cell lines, but not T lymphocytes by an adhesion blocked in part by mAb to VLA-4 (CD49d). The cultured FDC also augmented B cell proliferation stimulated by anti-mu sera and/or CD40 mAb. Cultured FDC spontaneously produced low levels of IL-6, but did not produce IL-1 alpha or TNF-alpha; however, after treatment with either IFN-gamma or LPS, they produced more IL-6. The expression of CD54 (ICAM-1) was elevated by treating the cultured FDC with either TNF-alpha, IL-1 beta, IFN-gamma or granulocyte-macrophage-CSF; in contrast, IL-4 had no effect on CD54 but rather up-regulated expression of VCAM-1. IFN-gamma, unlike the other cytokines tested, increased expression of a set of markers on cultured FDC (CD54, VCAM-1, and CD14) and converted these class II-negative cells into class II+ cells. The fact that various T cell-derived cytokines have different effects on FDC suggests that the T cell products may influence the manner by which FDC stimulate B cell proliferation and maturation.  相似文献   

4.
Ontogeny-specific differences in hematopoietic behavior may be influenced by unique adhesive interactions between hematopoietic cells and the microenvironment, such as that mediated by vascular cell adhesion molecule-1 (VCAM-1, CD 106). Although VCAM-1 is variably expressed during vertebrate development, we hypothesized that VCAM-1 expression might be linked to the enhanced capacity of the fetal liver microenvironment to support hematopoiesis. To test this we used immortalized murine stromal cell lines derived from midgestation fetal liver and adult bone marrow to compare the functional expression of VCAM-1. Molecular analysis of VCAM-1 expression was performed on stromal cell lines using Northern blot analysis, immunoprecipitation studies, and solid-phase enzyme-linked immunosorbent assay. Hematopoietic studies were performed by coculturing fetal liver cells with stromal cell lines, and the functional readout was determined by high-proliferative potential colony-forming cell (HPP-CFC) adherence assays. In contrast to our initial hypothesis, we observed greater expression of VCAM-1 messenger ribonucleic acid and protein on an adult marrow stromal cell line. In functional studies, anti-VCAM-1 antibody inhibited the binding of nearly half of the HPP-CFCs to adult marrow stroma but had a minimal effect on their binding to fetal liver stroma, despite the greater adherence of HPP-CFCs to fetal stroma. We conclude that VCAM-1 influences the hematopoietic supportive capacity of immortalized murine stroma derived from adult bone marrow. Our studies suggest that cellular interactions other than those mediated by VCAM-1 are involved in the increased adhesive capacity of immortalized murine stroma derived from fetal liver.  相似文献   

5.
To confirm whether human cancer-induced stromal cells are derived from bone marrow, bone marrow (BM) cells obtained from beta-galactosidase transgenic and recombination activating gene 1 (RAG-1) deficient double-mutant mice (H-2b) were transplanted into sublethally irradiated severe combined immunodeficient (SCID) mice (H-2d). The human pancreatic cancer cell line Capan-1 was subcutaneously xenotransplanted into SCID recipients and stromal formation was analyzed on day 14 and on day 28. Immunohistochemical and immunofluorescence studies revealed that BM-derived endothelial cells (X-gal/CD31 or H-2b/CD31 double-positive cells) and myofibroblasts (X-gal/alpha-smooth muscle actin or H-2b/alpha-smooth muscle actin double-positive cells) were present within and around the cancer nests. On day 14, the frequencies of BM-derived endothelial cells and BM-derived myofibroblasts were 25.3+/-4.4% and 12.7+/-9.6%, respectively. On day 28, the frequency of BM-derived endothelial cells was 26.7+/-9.7%, which was similar to the value on day 14. However, the frequency of BM-derived myofibroblasts was significantly higher (39.8+/-17.1%) on day 28 than on day 14 (P<0.05). The topoisomerase IIalpha-positive ratio was 2.2+/-1.2% for the H-2b-positive myofibroblasts, as opposed to only 0.3+/-0.4% for the H-2b-negative myofibroblasts, significant proliferative activity was observed in the BM-derived myofibroblasts (P<0.05). Our results indicate that BM-derived myofibroblasts become a major component of cancer-induced stromal cells in the later stage of tumor development.  相似文献   

6.
In order to elucidate the pathologic significance of the bone marrow (BM) microenvironment in multiple myeloma (MM) and rheumatoid arthritis (RA), we established patient- or healthy donor (HD)-derived BM stromal cell lines by transfecting the plasmid for expression of SV40 large T Ag and examined their ability to support the stromal cell-dependent growth of a pre-B cell line, DW34. The means of recovered cell numbers of DW34 co-cultured with MM- and RA-derived BM stromal cell lines ranged from 6- to 10-fold more than those with HD-derived ones. Their enhanced ability to support DW34 cell growth was not caused by cytokines, including IL-6, IL-7, and c-kit ligand, although exogenous IL-7 could augment the growth-supporting ability. DW34 cell growth on the stromal cell lines was abolished by inhibiting cell-to-cell interaction with a membrane filter. FACS analysis revealed that the stromal cell lines did not express LFA-1 alpha, beta, NCAM, or ELAM-1. Both patient and HD BM stromal cell lines variably expressed ICAM-1, VCAM-1, and CD44. However, surface expression levels of these molecules did not correlate with the ability of the stromal cell lines to support DW34 cell growth. Taken together, these results suggested that BM microenvironment might play important roles in the pathogenesis of MM and RA.  相似文献   

7.
The liver is a site where activated CD8(+) T cells are trapped and destroyed at the end of an immune response. The intrahepatic accumulation of activated murine TCR transgenic CD8(+) T cells was significantly reduced when either ICAM-1 or VCAM-1 was blocked by specific Ab. These two adhesion mechanisms account for essentially all the trapping of activated CD8(+) T cells in the mouse liver. Although the ICAM-1-mediated trapping depends on the capacity of the vasculature and/or the parenchymal cells to present Ag, the accumulation of cells through VCAM-1 does not require Ag recognition. Thus, Ags expressed by the non-bone marrow-derived cells in the liver actively cause CD8(+) T cell accumulation through TCR-activated ICAM-1 adhesion, but the liver can also passively sequester activated CD8(+) T cells that do not recognize intrahepatic Ag, through VCAM-1 adhesion.  相似文献   

8.
Multipotent marrow stromal cell line is able to induce hematopoiesis in vivo.   总被引:12,自引:0,他引:12  
Several murine marrow stromal cells were established from murine bone marrow cultures. Stromal cell lines transfected with a tumor-inducing polyoma virus middle T antigen (MTAg) were inoculated into nude mice subcutaneously. KUSA-MTAg cells, one of these cell lines, led to the rapid local development of bone marrow consisting of trilineage hematopoietic cells and bone; other cell lines produced spindle cell sarcoma or hemangiosarcoma. These results suggested that a single stromal cell line, KUSA-MTAg cells, may induce hematopoietic stem cells or early progenitors of three lineages of hematopoietic cells in vivo. Interestingly, untransfected KUSA cells expressed three new mesenchymal phenotypes, osteocytes, adipocytes, and myotubes, after treatment with 5-azacytidine.  相似文献   

9.
Two new mAbs (M/K-1 and M/K-2) define an adhesion molecule expressed on stromal cell clones derived from murine bone marrow. The protein is similar in size to a human endothelial cell adhesion molecule known as VCAM-1 or INCAM110. VCAM-1 is expressed on endothelial cells in inflammatory sites and recognized by the integrin VLA-4 expressed on lymphocytes and monocytes. The new stromal cell molecule is a candidate ligand for the VLA-4 expressed on immature B lineage lymphocytes and a possible homologue of human VCAM-1. We now report additional similarities in the distribution, structure, and function of these proteins. The M/K antibodies detected large cells in normal bone marrow, as well as rare cells in other tissues. The antigen was constitutively expressed and functioned as a cell adhesion molecule on cultured murine endothelial cells. It correlated with the presence of mRNA which hybridized to a human VCAM-1 cDNA probe. Partial NH2 terminal amino acid sequencing of the murine protein revealed similarities to VCAM-1 and attachment of human lymphoma cells to murine endothelial cell lines was inhibited by the M/K antibodies. All of these observations suggest that the murine and human cell adhesion proteins may be related. The antibodies selectively interfered with B lymphocyte formation when included in long term bone marrow cultures. Moreover, they caused rapid detachment of lymphocytes from the adherent layer when added to preestablished cultures. The VCAM-like cell adhesion molecule on stromal cells and VLA-4 on lymphocyte precursors may both be important for B lymphocyte formation.  相似文献   

10.
Frozen or paraffin-embedded human and rat lung specimens were stained with antibodies against total actin, alpha-smooth muscle (SM) actin, vimentin, desmin, or gelsolin. Alveolar interstitial myofibroblasts [i.e., contractile interstitial cells (CIC)] were labeled by total actin antibody but not by alpha-SM actin antibody. They stained for vimentin and gelsolin and, in rat lungs, most of them for desmin. Pericytes located around venules at the junction of three alveolar septa were always positive for alpha-SM actin and never for desmin. Tissue samples were also immunostained by an alpha-SM actin antibody and studied by electron microscopy. With this technique we confirmed that cells, identified as pericytes on the basis of their location, were intensely labeled by alpha-SM actin antibodies, whereas alveolar myofibroblasts were not. We conclude that in the lung interstitium pericytes and alveolar myofibroblasts have distinct cytoskeletal features, alpha-SM actin antibody staining being a simple method to distinguish between them. Furthermore, it appears that alveolar myofibroblasts have a peculiar pattern of cytoskeletal protein composition which, in the rat, is similar to that previously described for stromal cells in uterine submucosa, liver sinusoids (Ito cells), or the core of intestinal villi.  相似文献   

11.
Stem cell transplantation is a promising strategy for delayed wound healing caused by chemotherapy. However, the fate of stem cells under chemotherapy has not been fully elucidated. Herein we characterized human fetal bone marrow stromal cells (hBMSCs) during wound healing in mice treated with cyclophosphamide (CTX). The isolated hBMSCs expressed the phenotype of CD11b(low)/CD14(low)/CD34(low)/CD45(low)/CD29(high)/CD44(high)/CD90(high)/CD105(high)/CD146(high)/STRO-1(low). Following in vitro exposure to CTX, hBMSCs showed decreased cell growth in a dose- and time-dependent manner, accompanied by increased expressions of collagen-I/III, and CD31. After transplantation, wounds closed as early as 8 days and were positive for α-smooth muscle actin (α-SMA), implicating the enhanced re-epithelialization and wound contraction. Moreover, proliferating cell nuclear antigen (PCNA) and CD31 showed co-localization with α-SMA, suggesting the differentiation of hBMSCs into epithelial cells and myofibroblasts/fibroblasts. Taken together, our results indicate hBMSCs can accelerate wound healing under chemotherapy through altering their phenotypes.  相似文献   

12.
The human gastrointestinal mucosa is exposed to a diverse normal microflora and dietary Ags and is a common site of entry for pathogens. The mucosal immune system must respond to these diverse signals with either the initiation of immunity or tolerance. APCs are important accessory cells that modulate T cell responses which initiate and maintain adaptive immunity. The ability of APCs to communicate with CD4+ T cells is largely dependent on the expression of class II MHC molecules by the APCs. Using immunohistochemistry, confocal microscopy, and flow cytometry, we demonstrate that alpha-smooth muscle actin(+), CD90+ subepithelial myofibroblasts (stromal cells) constitutively express class II MHC molecules in normal colonic mucosa and that they are distinct from professional APCs such as macrophages and dendritic cells. Primary isolates of human colonic myofibroblasts (CMFs) cultured in vitro were able to stimulate allogeneic CD4+ T cell proliferation. This process was dependent on class II MHC and CD80/86 costimulatory molecule expression by the myofibroblasts. We also demonstrate that CMFs, engineered to express a specific DR4 allele, can process and present human serum albumin to a human serum albumin-specific and DR4 allele-restricted T cell hybridoma. These studies characterize a novel cell phenotype which, due to its strategic location and class II MHC expression, may be involved in capture of Ags that cross the epithelial barrier and present them to lamina propria CD4+ T cells. Thus, human CMFs may be important in regulating local immunity in the colon.  相似文献   

13.
Granulation tissue fibroblasts (myofibroblasts) develop several ultrastructural and biochemical features of smooth muscle (SM) cells, including the presence of microfilament bundles and the expression of alpha-SM actin, the actin isoform typical of vascular SM cells. Myofibroblasts have been proposed to play a role in wound contraction and in retractile phenomena observed during fibrotic diseases. We show here that the subcutaneous administration of transforming growth factor- beta 1 (TGF beta 1) to rats results in the formation of a granulation tissue in which alpha-SM actin expressing myofibroblasts are particularly abundant. Other cytokines and growth factors, such as platelet-derived growth factor and tumor necrosis factor-alpha, despite their profibrotic activity, do not induce alpha-SM actin in myofibroblasts. In situ hybridization with an alpha-SM actin probe shows a high level of alpha-SM actin mRNA expression in myofibroblasts of TGF beta 1-induced granulation tissue. Moreover, TGF beta 1 induces alpha-SM actin protein and mRNA expression in growing and quiescent cultured fibroblasts and preincubation of culture medium containing whole blood serum with neutralizing antibodies to TGF beta 1 results in a decrease of alpha-SM actin expression by fibroblasts in replicative and non-replicative conditions. These results suggest that TGF beta 1 plays an important role in myofibroblast differentiation during wound healing and fibrocontractive diseases by regulating the expression of alpha-SM actin in these cells.  相似文献   

14.
The in vitro study of mammalian hematopoiesis is hindered by the lack of immortalized human stromal cell lines that support hematopoiesis. We have immortalized human stromal vascular smooth muscle cells characterized by the expression of the alpha-smooth muscle (alpha-SM) actin. This marker is usually down-regulated as a result of oncogenic transformation. To correct this dedifferentiation, we placed the expression of human papilloma virus 16 E6/E7 oncogenes under the control of the tissue-specific alpha-SM actin promoter. The immortalization event is rare and requires polyclonal culture, but the corresponding established line retains alpha-SM actin expression. Moreover, when compared with other lines derived from the same cells from vectors made with the same oncogenes but driven by either an internal SV40 promoter or the viral long terminal repeat, this line is less transformed as shown by anchorage-independent growth assay. We show therefore that the use of a physiological promoter allows the production of human cell lines with a conserved phenotype.  相似文献   

15.
Megakaryocytopoiesis and thrombocytopoiesis result from the interactions between hematopoietic progenitor cells, humoral factors, and marrow stromal cells derived from mesenchymal stem cells (MSCs) or MSCs directly. MSCs are self-renewing marrow cells that provide progenitors for osteoblasts, adipocytes, chondrocytes, myocytes, and marrow stromal cells. MSCs are isolated from bone marrow aspirates and are expanded in adherent cell culture using an optimized media preparation. Culture-expanded human MSCs (hMSCs) express a variety of hematopoietic cytokines and growth factors and maintain long-term culture-initiating cells in long-term marrow culture with CD34(+) hematopoietic progenitor cells. Two lines of evidence suggest that hMSCs function in megakaryocyte development. First, hMSCs express messenger RNA for thrombopoietin, a primary regulator for megakaryocytopoiesis and thrombocytopoiesis. Second, adherent hMSC colonies in primary culture are often associated with hematopoietic cell clusters containing CD41(+) megakaryocytes. The physical association between hMSCs and megakaryocytes in marrow was confirmed by experiments in which hMSCs were copurified by immunoselection using an anti-CD41 antibody. To determine whether hMSCs can support megakaryocyte and platelet formation in vitro, we established a coculture system of hMSCs and CD34(+) cells in serum-free media without exogenous cytokines. These cocultures produced clusters of hematopoietic cells atop adherent MSCs. After 7 days, CD41(+) megakaryocyte clusters and pro-platelet networks were observed with pro-platelets increasing in the next 2 weeks. CD41(+) platelets were found in culture medium and expressed CD62P after thrombin treatment. These results suggest that MSCs residing within the megakaryocytic microenvironment in bone marrow provide key signals to stimulate megakaryocyte and platelet production from CD34(+) hematopoietic cells.  相似文献   

16.
Bone marrow stromal microenvironment is essential for the maintenance of the hematopoietic stem cell renewal both by cell-cell interaction and cytokine production. However, stromal cells also exhibit drug metabolizing activities and they may accumulate the drug and successively affect hematopoietic progenitors by a retarded release. Our study investigated the role of both primary culture of murine bone marrow stroma and established stromal cells (SR-4987) in modulating the "in vitro" toxic activity of Doxorubicin (DXR) against murine granulocyte-macrophage progenitors (CFU-GM). The main part of the study has been performed by a "in vitro" agar bilayer technique based on the CFU-GM assay performed over a feederlayer of stromal cells. The results suggest that bone marrow stromal cells play also an important role in decreasing the toxicity of Doxorubicin. Further SR-4987 stromal cells produce a Doxorubicin metabolite (not belonging to the series of metabolites described in literature) which is completely ineffective in inhibiting the growth of CFU-GM and the activity of topoisomerase I. Our data suggest that bone marrow stromal cells must be considered as a cell population having opposite pharmacological roles in modulating the drug toxicity on hematopoietic progenitors. In our model a mechanism of detoxification concerns the capacity of SR-4987 stromal cells to inactivate the drug. For a better prediction of drug hematotoxicity, it is very important to develop "in vitro" cell models able to discriminate between positive and negative modulation of drug toxicity that stromal cells can exert in the bone marrow microenvironment.  相似文献   

17.
We found that the stromal cell-derived factor-1/pre-B cell growth-stimulating factor receptor, CXC chemokine receptor 4 (CXCR4), is expressed on human CD34+ bone marrow (BM) cells. Stringently FACS-sorted CD34+CXCR4+ BM cells completely lack myeloid, erythroid, megakaryocytic, and mixed colony-forming potential (myeloid progenitors), but give rise to B and T lymphoid progenitors, whereas CD34+CXCR4- BM cells can generate colonies formed by myeloid progenitors and can also develop into these lymphoid progenitors. Therefore, expression of CXCR4 on CD34+ BM cells can allow lymphoid progenitors to be discriminated from myeloid progenitors. Because CD34+CXCR4+ cells are differentiated from CD34+CXCR4- cells, multipotential progenitors located in the BM are likely to be negative for CXCR4 expression. CXCR4 seems to be expressed earlier than the IL-7R and terminal deoxynucleotidyl transferase during early lymphohemopoiesis. These results suggest that the expression of CXCR4 on CD34+ BM cells is one of the phenotypic alterations for committed lymphoid progenitors.  相似文献   

18.
We attempted to characterize the phenotype of cells which initiate fibroblastic stromal cell formation (stroma-initiating cells: SICs), precursor cells for fibroblastic stromal cells, based on the expression of cell surface antigens. First, we stained adult murine bone marrow cells with several monoclonal antibodies and separated them by magnetic cell sorting. SICs were abundant in the c-kit(+), Sca-1(+), CD34(+), VCAM-1(+), c-fms(+), and Mac-1(-) populations. SICs were recovered in the lineage-negative (Lin(-)) cells but not the Lin(+) cells. When macrophage colony-stimulating factor (M-CSF) was absent from the culture medium, no stromal colony appeared among the populations enriched in SICs. Based on these findings, the cells negative for lineage markers and positive for c-fms (M-CSF receptor) were further divided on the basis of the expression of c-kit, VCAM-1, Sca-1 or CD34 with a fluorescence-activated cell sorter. SICs were found to be enriched in the Lin(-)c-fms(+)c-kit(low) cells and Lin(-)c-fms(+)VCAM-1(+) cells but not in Lin(-)c-fms(+)Sca-1(+) cells and Lin(-)c-fms(+)CD34(low) cells. As a result, the SICs were found to be present at highest frequency in Lin(-)c-fms(+)c-kit(low)VCAM-1(+) cells: a mean of 64% of the SICs in the Lin(-) cells were recovered in the population. In morphology and several characteristics, the stromal cells derived from Lin(-)c-fms(+)c-kit(low)VCAM-1(+) cells resembled fibroblastic cells. The number of Lin(-)c-fms(+)c-kit(low)VCAM-1(+) cells in bone marrow of mice injected with M-CSF was higher than that in control mice. In this study, we identified SICs as Lin(-)c-fms(+)c-kit(low)VCAM-1(+) cells and demonstrated that M-CSF had the ability to increase the cell population in vivo.  相似文献   

19.
Bone marrow stroma provides the microenvironment for hematopoiesis and is also the source of mesenchymal progenitors (mesenchymal or marrow stromal cells [MSC]) that may serve as long-lasting precursors for bone, cartilage, lung, and muscle. While several studies have indicated the differentiation potential of MSC, few studies have been performed on the cells themselves. In an attempt to further expand our knowledge on these cells, we have performed studies on their cell cycle, immuno- and adhesive-phenotype, ex vivo expansion, and differentiation properties. MSC cultures have been initiated from human bone marrow low-density mononuclear cells and maintained in the absence of differentiation stimuli and hematopoietic cells. The homogenous layer of adherent cells thus formed exhibits a typical fibroblastlike morphology, a population doubling time of 33 h, a large expansive potential, and cell cycle characteristics including a subset (20%) of quiescent cells. The antigenic phenotype of MSC is not unique, borrowing features of mesenchymal, endothelial, and epithelial cells. Together, MSC express several adhesion-related antigens, like the integrin subunits α4, α5, β1, integrins αvβ3 and αvβ5, ICAM-1, and CD44H. MSC produce and functionally adhere to extracellular matrix molecules. When incubated under proper stimuli, MSC differentiate into osteoblasts or adipocytes. Taken together, these results demonstrate that adherent marrow-derived cells cultured in the absence of hematopoietic cells and differentiation stimulus give rise to a population of cells with phenotypical and functional features of mesenchymal progenitors. The existence of a subset of quiescent cells in MSC cultures seems to be extremely significant, since their number and properties should be enough to sustain a steady supply of cells that upon proliferation and commitment may serve as precursors for a number of nonhematopoietic tissues. J. Cell. Physiol. 181:67–73, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

20.
A role of EphB4 receptor and its ligand,ephrin-B2, in erythropoiesis   总被引:5,自引:0,他引:5  
Erythropoiesis is regulated not only by erythropoietin but also by microenvironments which are composed of transmembrane molecules. We have previously shown that a receptor tyrosine kinase EphB4 is predominantly expressed on human erythroid progenitors in bone marrow. EphB4 is expressed in approximately 45% of hematopoietic progenitor cells, which are CD34-positive and c-Kit-positive in human umbilical cord blood (hUCB). The transmembrane ligand for EphB4 or ephrin-B2 is expressed on bone marrow stromal cells and arterial endothelial cells. When such EphB4-positive hematopoietic progenitor cells were co-cultured with stromal cells which express ephrin-B2, they were immediately detached from stromal cells and differentiated to mature erythroid cells. At that time, expression of EphB4 immediately down-regulated. In contrast, on ephrin-B2 non-expressing stromal cells, they remained EphB4-positive cells and the generated number of mature erythroid cells was less than that on ephrin-B2 expressing stromal cells. Additionally, ephrin-B2 expression on endothelial cells up-regulated under hypoxic condition. Taken together, we propose that one of the molecular cues that regulate erythropoiesis is ephrin-B2 on stromal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号