首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two lectins were purified by affinity chromatography from mature peanut (Arachis hypogaea L.) nodules, and compared with the previously characterised seed lectin of this plant. One of the nodule lectins was similar to the seed lectin in its molecular weight and amino-acid composition and ability to bind derivatives of galactose. However, unlike the seed lectin, this nodule lectin appeared to be a glycoprotein and the two lectins were only partially identical in their reaction with antibodies prepared against the seed lectin. The other nodule lectin also appeared to be a glycoprotein but bound mannose/glucose-like sugar derivatives, and differed from the seed lectin in molecular weight, antigenic properties and amino-acid composition.Abbreviations Gal galactose - Gle glucose - GNL galactose-binding nodule lectin - Fru fructose - MNL mannosebinding nodule lectin - M r rerative molecular mass - PBS phosphate-buffered saline - PSL peanut seed lectin - SDS sodium dodecyl sulphate - Sorb sorbitol  相似文献   

2.
Galactoside-binding lectin has been isolated from whole Xenopus laevis embryos and tadpoles at four development stages: st. 24–26, 32, 41 and 47. The main lectin activity at st. 24–26 is -galactoside specific, producing a 34/35.5K doublet on SDS-PAGE. Later in development, lectin activities specific for a wide range of other sugars appear concommitant with the detection of a number of new protein bands on SDS-PAGE gels. The greatest variety of new lectin activities exists at st. 32 when lectins specific for all of the main sugar families found in nature are detected. After this stage and up to st. 47 (the beginning of metamorphosis), fewer different lectin activities are again detected. The results suggest that a complex, developmentally regulated battery of different lectins are present during early Xenopus development, perhaps with stage-specific roles to play in the control of tissue morphogenesis.  相似文献   

3.
Organelles isolated from leaves of spinach (Spinacia oleracea L.) were prefixed in glutaraldehyde and then incubated with ferritin conjugates of four lectins — Concanavalin A (Con A), Ricinus communis L. agglutinin, MW 120,000 (RCA), soybean agglutinin (SBA), and wheat germ agglutinin (WGA) — in order to probe their cytoplasmic surfaces for saccharide residues. In each case the major leaf organelles, including microbodies, mitochondria and chloroplast derivatives, failed to exhibit labeling when examined with the electron microscope. Tobacco (Nicotiana tabacum L.) leaf protoplasts, incubated simultaneously with and under identical conditions to the spinach organelles, showed specific labeling of their plasma membranes with all four lectin conjugates, thus establishing the efficacy of the procedure for demonstrating the presence of binding sites when they exist. Further attempts to show binding of one of the lectins, Con A, by labeling with fluorescein-Con A and by organelle agglutination, yielded results consistent with the absence of ultrastructural labeling. It is concluded that no saccharide residues recognized by the four lectins are present on the cytoplasmic surfaces of organelles and that those residues reported to be constituents of intracellular membranes, therefore, are most likely exposed on the luminal (extracytoplasmic) surfaces.Abbreviations Con A Concanavalin A - RCA Ricinus communis agglutinin, MW 120,000 - SBA soybean agglutinin - WGA wheat germ agglutinin  相似文献   

4.
The direct double-antibody enzymelinked immunosorbent assay system was used in the detection and measurement of seed lectins from peanut (Arachis hypogaea L.) and soybean (Glycine max L.) plants (PSL and SBL, respectively) that had been inoculated with their respective rhizobia. Concentrations of PSL dropped to undetectable levels in peanut roots at 9 d and stems and leaves at 27 d after planting; SBL could no longer be detected in soybean roots at 9 d and in stems and leaves at 12 d. A lectin antigenically similar to PSL was first detected in root nodules of peanuts at 21 d reaching a maximum of 8 g/g at 29 d then decreasing to 2.5 g/g at 60 d. There was no evidence of a corresponding lectin in soybean nodules.Sugar haemagglutination inhibition tests with neuraminidase-treated human blood cells established that PSL and the peanut nodule lectin were both galactose/lactose-specific. Further tests with rabbit blood cells demonstrated a second mannosespecific lectin in peanut nodule extracts that was not detected in root extracts of four-week-old inoculated plants or six-week-old uninoculated plants, although six-week-old root extracts from inoculated plants showed weak lectin activity. The root extracts from both nodulated and uninoculated plants contained another peanut lectin that agglutinated rabbit but not human blood cells. Haemagglutination by this lectin was, however, not inhibited by simple sugars but a glycoprotein, asialothyroglobulin, was effective in this respect.Abbreviations DAS double antibody sandwich - ELISA enzyme-linked immunosorbent assay - PBS phosphate-buffered saline - PSL peanut seed lectin - SBL soybean lectin  相似文献   

5.
Wheat (Triticum aestivum) germ agglutinin represents a complex mixture of multiple isolectin forms. Upon ion exchange chromatography at pH 3.8, three isolectins can be separated, each of which is composed of two identical subunits. At pH 5.0, however, three additional isolectins can be distinguished, which are built up of two different subunits (heteromeric lectins). Evidence is presented that these heterodimers are normal constituents of the wheat embryo cells. Analyses of the isolectin patterns in extracts from Triticum monococcum, Triticum turgidum dicoccum and Triticum aestivum, provide evidence that each genome, either in simple or complex (polyploid) genomes, directs the synthesis of a single lectin subunit species. In addition, a comparison of the isolectin pattern in these wheat species of increasing ploidy level, made it possible to determine unequivocally the genome by which the individual lectin subunits in polyploid species are coded for. The possible use of lectins in studies on the origin of individual genoms in polyploid species is discussed.Abbreviations CL cereal lectin - PBS phosphate buffered saline - SP Sephadex sulfopropyl Sephadex - WGA wheat germ agglutinin  相似文献   

6.
The insecticidal activity of the leaf (ASAL) and bulb (ASAII) agglutinins from Allium sativum L. (garlic) against the cotton leafworm, Spodoptera littoralis Boisd. (Lepidoptera: Noctuidae) was studied using transgenic tobacco plants expressing the lectins under the control of the constitutive CaMV35S promoter. PCR analysis confirmed that the garlic lectin genes were integrated into the plant genome. Western blots and semi-quantitative agglutination assays revealed lectin expression at various levels in the transgenic lines. Biochemical analyses indicated that the recombinant ASAL and ASAII are indistinguishable from the native garlic lectins. Insect bioassays using detached leaves from transgenic tobacco plants demonstrated that the ectopically expressed ASAL and ASAII significantly (P < 0.05) reduced the weight gain of 4th instar larvae of S. littoralis. Further on, the lectins retarded the development of the larvae and their metamorphosis, and were detrimental to the pupal stage resulting in weight reduction and lethal abnormalities. Total mortality was scored with ASAL compared to 60% mortality with ASAII. These findings suggest that garlic lectins are suitable candidate insect resistance proteins for the control of S. littoralis through a transgenic approach.  相似文献   

7.
J. F. Manen  A. Pusztai 《Planta》1982,155(4):328-334
Antibodies against pure E4- and L4-lectins from the seeds of Phaseolus vulgaris L. raised in rabbits were made monospecific by immunoaffinity chromatography on E4- or L4-lectin Sepharose 4B columns. Localisation of lectins in bean seeds was investigated by indirect immunofluorescence and by electron microscopy on sections stained with colloidal gold particles coated with monospecific anti-E4- and anti-L4-IgG. In parenchyma cells from the cotyledons both E- and L-type lectins were found inside the protein bodies. Apparently the matrix of all protein bodies contained both types of lectins. On the other hand in vascular and in axis cells the two types of lectins were localised in the cytoplasm, outside the protein bodies. Thus these findings suggest different roles for the lectins: in cotyledons this may be a specific form of N storage, while in vascular and axis cells lectins may have a more direct metabolic part to play.  相似文献   

8.
The lectin from the garden pea (Pisum sativum L.) has been localized at the ultrastructural level by the unlabeled peroxidase-antiperoxidase procedure of L.A. Sternberger et al. (1970, J. Histochem. Cytochem 18, 315–333) in 24 h imbibed seeds. Upon examination by light microscopy and transmission electron microscopy, the lectin was only found in the protein bodies of cotyledons and embryo axis. Cell walls as well as membraneous fractions were completely devoid of lectin. These results are discussed in relation to the possible physiological function of seed lectins.Abbreviations PBS phosphate-buffered saline - TBS Tris-buffered saline - PAP-complex horseradish peroxidase-antihorseradish peroxidase soluble complex - NGS normal goat serum - TBS* Tris-buffered saline containing 0.5 M NaCl, pH 7.6  相似文献   

9.
Lectin preparations have been isolated and purified from the culture liquid of the xylotrophic basidiomycete Lentinus edodes (Berk.) Singer [Lentinula edodes (Berk.) Pegler]. The culture of L. edodes F-249 synthesizes two extracellular lectins different in composition and physicochemical properties. Extracellular lectin L1 from L. edodes is a glycoprotein of mono-subunit structure with molecular weight of 43 kD. L1 is comprised of 10.5 +/- 1.0% (w/w) carbohydrates represented by glucose (Glc). Extracellular lectin L2 is a proteoglycan of mono-subunit structure with molecular weight of 37 kD. L2 is comprised of 90.3 +/- 1.0% (w/w) carbohydrates represented by Glc (73% of the total mass of the carbohydrate moiety of the lectin molecule) and galactose (Gal) (27% of the total mass of the carbohydrate part of the lectin molecule). The content of Asn in L2 is high, i.e. 42% (w/w) of total amino acids. This fact along with the composition of the carbohydrate part of the molecule (Glc + Gal) allows one to assign L2 to N-asparagine-bound proteins. Both lectins are specific to D-Gal and lactose (Lac) at an equal for L1 and L2 minimal inhibiting concentration of these carbohydrates (2.08 mM Gal and 8.33 mM Lac). Other carbohydrates to which the lectins show affinity are different for the two lectins: Rha (4.16 mM) for L1 and Ara (4.16 mM) and mannitol (8.33 mM) for L2. The purified extracellular lectins of L. edodes are highly selective at recognition of definite structures on the surface of trypsinized rabbit erythrocytes and do not react with the erythrocytes of other animals and humans.  相似文献   

10.
Subunit exchange between lectins from different cereal species   总被引:1,自引:0,他引:1  
Lectins from Triticum monococcum, Secale cereale (rye), and Hordeum vulgare (barley) can exchange their subunits in vitro and thereby form (intergeneric) heteromeric lectins. An analysis of the isolectin pattern of a Triticale variety revealed that intergeneric heterodimers of wheat and rye lectin subunits are normal constituents of the embryo cells. It appears, therefore, that these different cereal lectins are structurally so closely related that their subunits can not distinguish between identical and nonidentical partners when they associate into dimers.Abbreviations CL cereal lectin - SP Sephadex sulfopropyl Sephadex - WGA wheat germ agglutinin  相似文献   

11.

Background

The Galanthus nivalis agglutinin (GNA)-related lectins have been reported to bear antiproliferative and apoptosis-inducing activities in cancer cells; however, the precise mechanisms by which GNA-related lectins induce cell death are still only rudimentarily understood.

Methods

In the present study, Polygonatum odoratum lectin (designated POL), a mannose-binding specific GNA-related lectin, possessed a remarkable antiproliferative activity toward murine fibrosarcoma L929 cells. And, this lectin induced L929 cell apoptosis in a caspase-dependent manner. In addition, POL treatment increased the levels of FasL and Fas-Associated protein with Death Domain (FADD) proteins and resulted in caspase-8 activation. Also, POL treatment caused mitochondrial transmembrane potential collapse and cytochrome c release, leading to activations of caspase-9 and caspase-3. Moreover, POL treatment enhanced tumor necrosis factor α (TNFα)-induced L929 cell apoptosis.

Results

Our data demonstrate for the first time that this lectin induces apoptosis through both death-receptor and mitochondrial pathways, as well as amplifies TNFα-induced L929 cell apoptosis.

General significance

These inspiring findings would provide new molecular basis for further understanding cell death mechanisms of the Galanthus nivalis agglutinin (GNA)-related lectins in future cancer investigations.  相似文献   

12.
The carbohydrate binding properties of theDolichos biflorus seed lectin and DB58, a vegetative tissue lectin from this plant, were compared using two types of solid phase assays. Both lectins bind to hog blood group A + H substance covalently coupled to Sepharose 4B and this binding can be inhibited with free blood group A + H substance. However, the binding of the seed lectin is inhibited byD-GalNAc whereas DB58 binding was not inhbited by any monosaccharide tested, thus suggesting that its carbohydrate combining site may be more extensive than that of the seed lectin. The activities of these two lectins also differ from one another in ability to recognize blood group A + H substance adsorbed on to plastic and in the effects of salt and urea on their carbohydrate binding activities. Neither lectin showed glycosidase activity with p-nitrophenyl -D-GalNAc or p-nitrophenyl -D-GalNAc.  相似文献   

13.
Characterization of the lectins from onion (Allium cepa), shallot (A. ascalonicum) and leek (A. porrum) has shown that these lectins differ from previously isolated Alliaceae lectins not only in their molecular structure but also in their ability to inhibit retrovirus infection of target cells.cDNA libraries constructed from poly(A)-rich RNA isolated from young shoots of onion, shallot and leek were screened for lectin cDNA clones using colony hybridization. Sequence analysis of the lectin cDNA clones from these three species revealed a high degree of sequence similarity both at the nucleotide and at the amino acid level.Apparently the onion, shallot and leek lectins are translated from mRNAs of ca. 800 nucleotides. The primary translation products are preproproteins (ca. 19 kDa) which are converted into the mature lectin polypeptides (12.5–13 kDa) after post-translational modifications.Southern blot analysis of genomic DNA has shown that the lectins are most probably encoded by a family of closely related genes which is in good agreement with the sequence heterogeneity found between different lectin cDNA clones of one species.  相似文献   

14.
We report on the distribution and initial characterization of glucose/mannose-specific isolectins of 4- and 7-d-old pea (Pisum sativum L.) seedlings grown with or without nitrate supply. Particular attention was payed to root lectin, which probably functions as a determinant of host-plant specificity during the infection of pea roots by Rhizobium leguminosarum bv. viciae. A pair of seedling cotyledons yielded 545±49 g of affinity-purified lectin, approx. 25% more lectin than did dry seeds. Shoots and roots of 4-d-old seedlings contained 100-fold less lectin than cotyledons, whereas only traces of lectin could be found in shoots and roots from 7-d-old seedlings. Polypeptides with a subunit structure similar to the precursor of the pea seed lectin could be demonstrated in cotyledons, shoots and roots. Chromatofocusing and isoelectric focusing showed that seed and non-seed isolectin differ in composition. An isolectin with an isoelectric point at pH 7.2 appeared to be a typical pea seed isolectin, whereas an isolectin focusing at pH 6.1 was the major non-seed lectin. The latter isolectin was also found in root cell-wall extracts, detached root hairs and root-surface washings. All non-seed isolectins were cross-reactive with rabbit antiserum raised against the seed isolectin with an isolectric point at pH 6.1. A protein similar to this acidic glucose/mannose-specific seed isolectin possibly represents the major lectin to be encountered by Rhizobium leguminosarum bv. viciae in the pea rhizosphere and at the root surface. Growth of pea seedlings in a nitrate-rich medium neither affected the distribution of isolectins nor their hemagglutination activity; however, the yield of affinity-purified root lectin was significantly reduced whereas shoot lectin yield slightly increased. Agglutination-inhibition tests demonstrated an overall similar sugar-binding specificity for pea seed and non-seed lectin. However root lectin from seedlings grown with or without nitrate supplement, and shoot lectin from nitrate-supplied seedlings showed a slightly different spectrum of sugar binding. The absorption spectra obtained by circular dichroism of seed and root lectin in the presence of a hapten also differed. These data indicate that nutritional conditions may affect the sugar-binding activity of non-seed isolectin, and that despite their similarities, seed and non-seed isolectins have different properties that may reflect tissue-specialization.Abbreviations IEF isoelectric focusing - MW molecular weight - pI isoelectric point - Psl1, Psl2 and Psl3 pea isolectins - SDSPAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis The authors wish to thank Professors L. Kanarek and M. van Poucke for helpful discussions.  相似文献   

15.
The lectin on the surface of 4- and 5-dold pea roots was located by the use of indirect immunofluorescence. Specific antibodies raised in rabbits against pea seed isolectin 2, which crossreact with root lectins, were used as primary immunoglobulins and were visualized with fluorescein- or tetramethylrhodamine-isothiocyanate-labeled goat antirabbit immunoglobulin G. Lectin was observed on the tips of newly formed, growing root hairs and on epidermal cells located just below the young hairs. On both types of cells, lectin was concentrated in dense small patches rather than uniformly distributed. Lectin-positive young hairs were grouped opposite the (proto)xylematic poles. Older but still-elongating root hairs presented only traces of lectin or none at all. A similar pattern of distribution was found in different pea cultivars, as well as in a supernodulating and a non-nodulating pea mutant. Growth in a nitrate concentration which inhibits nodulation did not affect lectin distribution on the surface of pea roots of this age. We tested whether or not the root zones where lectin was observed were susceptible to infection by Rhizobium leguminosarum. When low inoculum doses (consisting of less than 106 bacteria·ml-1) were placed next to lectin-positive epidermal cells and on newly formed root hairs, nodules on the primary roots were formed in 73% and 90% of the plants, respectively. Only a few plants showed primary root nodulation when the inoculum was placed on the root zone where lectin was scarce or absent. These results show that lectin is present at those sites on the pea root that are susceptible to infection by the bacterial symbiont.Abbreviations FITC fluorescein isothiocyanate - TRIC tetramethylrhodamine isothiocyanate  相似文献   

16.
The mechanism of the toxicity of plant lectins is not clearly understood. The insecticidal activity of plant lectins results from effects on insect metabolism by interfering with gut enzymatic function. Thus, a greater understanding of the mechanisms of plant lectin toxicity in insects is required. This study reports the effects of dietary ingestion of the glucose-mannose binding lectin Concanavaline A (Con A) on bird cherry-oat aphid (Rhopalosiphum padi L.) enzymes involved in protein digestion [aminopeptidase N and cathepsin L (CatL)], sugar (α- and β-glucosidases), and phosphorus (alkaline and acid phosphatase) metabolism. An aphid bioassay test using artificial diets containing Con A is also presented. An increase in the concentration of Con A generally suppressed the activity of glucosidases and phosphatases, and increased the activity of CatL in apterae morphs. Bird cherry-oat aphid performance was affected by the presence of Con A in artificial diets. The lectin added to the liquid diet increased the pre-reproductive period, mortality, and the average time of generation development (T) and decreased fecundity and the intrinsic rate of natural increase (rm). Aphicidal activity of Con A might be linked to its interference in the activity of digestive enzymes.  相似文献   

17.
Lectins I and II isolated from the nitrogen-fixing soil bacterium Paenibacillus polymyxa 1460 were found to be able to suppress the growth of Rhizobium leguminosarum 252 and Bacillus subtilis 36 at nearly all the concentrations tested (from 1 to 10 g/ml). Lectin I was also inhibitory to Azospirillum brasilense 245 and Erwinia carotovora subsp. citrulis 603, while lectin II exerted bactericidal activity against Xanthomonas campestris B-610 and B-611 and A. brasilense 245. The bacillar lectins incubated with Rhizobiumand Azospirillum cells caused leakage of low-molecular-weight substances from the cells, presumably resulting from impairment of the membrane barrier function. We believe that one of the possible mechanisms of the bacterial growth inhibition by lectins is mediated by the lectin-specific receptors occurring on the bacterial membrane, whose interaction with the lectin molecules induces conformational alterations in the membrane and concurrent malfunction of the metabolism of bacterial cells.  相似文献   

18.
Summary Mannose/glucose- and galactose-binding lectins (ML and GL respectively, were located by immunogold labelling in tissues of a peanut (Arachis hypogaea) nodule induced by an effectiveBradyrhizobium sp. strain. Light and electron microscopic examination of silver-enhanced semithin and ultrathin sections, respectively, revealed that both lectins were widely distributed throughout the cortex and bacteroidal zones although ML was more abundant. The lectins were predominantly in the vacuoles of cortical cells but GL was absent from, or at low concentration in, a two-cell-thick layer of cortical cells surrounding the bacteroidal region. Only ML was detected in cells of the vascular bundle endodermis and in central vascular bundle cells; neither lectin was found in pericycle cells. Bacteroidal cells contained abundant ML in the nuclei and cytoplasm surrounding bacteroids while GL was mainly located in the central vacuoles of these cells. Neither lectin was associated with bacteroid surfaces, peribacteroid membranes, plant cell walls or cell organelles and membranes. The above observations indicate that the nodule lectins are not symbiotic cell recognition determinants and suggest that they have protein storage functions.Abbreviations BSA bovine serum albumin - GL galactose-binding lectin - ML mannose-binding lectin - PBS phosphate-buffered saline - PBST phosphate-buffered saline plus Tween  相似文献   

19.
The spectrum of lectin binding sites as it emerges during embryonic development of Drosophila was analysed by means of fluorescein-labelled lectins. As development and morphogenesis proceed, the reaction pattern becomes more and more complex. Mannose/glucose-, mannose-, N-acetylglucosamine- and poly-N-ace-tylglucosamine-specific lectins bind ubiquitously. Nuclear envelopes only have binding sites for wheat germ agglutinin. N-acetylgalactosamine-binding lectins are specific for ectodermal derivatives. Ga-3-N-acetylgalac-tosamine-binding lectins are highly selective markers for neural structures, haemocytes and Garland cells. It is also shown that Drosophila laminin is differentially glycosylated. The possible implications of differential and germ layer-specific glycosylation are discussed.Dedicated to the memory of Jan Callaerts  相似文献   

20.
This review focuses on the cytotoxic properties of Viscum album L. (VAL). Apart from well-established results of protein synthesis inhibition by the mistletoe lectins (MLs), namely their catalytic A chain, there is now convincing evidence that the VAL-mediated cytotoxicity is mainly due to an induction of apoptosis. Among the more than 1,000 proteins detected in VAL, the MLs and the viscotoxins (VTs) are the predominant toxic proteins. Using purified components, such as the D-galactose-specific ML I, the N-acetyl-D-galactosamine-specific ML II and ML III, crude VTs and oligosaccharides, only the MLs induced apoptosis. The in vitro studies suggest that interaction of lectin B chains with appropriate receptors on the cell surface activates distinct signalling pathways that ultimately leads to apoptosis in a large fraction of cells, while others survive, however, with a conservation of their DNA. Inhibition of protein synthesis by the A chain of the hololectin probably accelerates the B chain-induced course of events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号