首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
T-cell co-stimulation delivered by the molecules B7-1 or B7-2 through CD28 has a positive effect on T-cell activation, whereas engagement of cytotoxic T-lymphocyte antigen 4 (CTLA-4) by these molecules inhibits activation. In vivo administration to mice of blocking monoclonal antibodies or Fab fragments against CTLA-4 can augment antigen-specific T-cell responses and, thus, therapy with monoclonal antibody against CTLA-4 has potential applications for tumor therapy and enhancement of vaccine immunization. The effects of B7-1 and B7-2 co-stimulation through CD28 depend on the strength of the signal delivered through the T-cell receptor (TCR) and the activation state of T cells during activation. Thus, we sought to determine whether these factors similarly influence the effect of B7-mediated signals delivered through CTLA-4 during T-cell activation. Using freshly isolated human T cells and Fab fragments of a monoclonal antibody against CTLA-4, we demonstrate here that CTLA-4 blockade can enhance or inhibit the clonal expansion of different T cells that respond to the same antigen, depending on both the T-cell activation state and the strength of the T-cell receptor signal delivered during T-cell stimulation. Thus, for whole T-cell populations, blocking a negative signal may paradoxically inhibit immune responses. These results provide a theoretical framework for clinical trials in which co-stimulatory signals are manipulated in an attempt to modulate the immune response in human disease.  相似文献   

2.
The mitogen-activated protein kinase extracellular signal-regulated kinase (ERK) is activated following engagement of the T-cell receptor and is required for interleukin 2 (IL-2) production and T-cell proliferation. This activation is enhanced by stimulation of the coreceptor CD28 and inhibited by the coreceptor CTLA-4. We show that the small G protein Rap1 is regulated in the opposite manner; it is inhibited by CD28 and activated by CTLA-4. Together, CD3 and CTLA-4 activate Rap1 in a sustained manner. To delineate T-cell function in the absence of Rap1 activity, we generated transgenic mice expressing Rap1GAP1, a Rap1-specific GTPase-activating protein. Transgenic mice showed lymphadenopathy, and transgenic T cells displayed increased ERK activation, proliferation, and IL-2 production. More significantly, the inhibitory effect of CTLA-4 on T-cell function in Rap1GAP1-transgenic T cells was reduced. We demonstrate that CTLA-4 activates Rap1, and we propose that intracellular signals from CTLA-4 antagonize CD28, at least in part, at the level of Rap1.  相似文献   

3.
Both CD8 and CD4 T cells undergo autocrine IL-2-induced proliferation and clonal expansion following stimulation with Ag and costimulation. The CD8 T cell response is transient because the cells rapidly become activation-induced nonresponsive (AINR) and exhibit split anergy. In these cells, the capacity for IL-2 production is lost, but TCR-mediated IFN-gamma production and cytotoxicity are maintained. At this point, the CTL become dependent on IL-2 provided by CD4 Th cells for continued expansion. If IL-2 is available to support expansion for a brief period, AINR is reversed and the cells regain the ability to produce IL-2. In this study, we show that CD4 T cells do not become AINR, but instead are rendered susceptible to Fas-mediated activation-induced cell death following stimulation through TCR and CD28. Using z-VAD-fmk or anti-Fas ligand mAb to inhibit cell death, we demonstrate that previously activated CD4 T cells retain the ability to up-regulate c-Jun N-terminal kinase activity and IL-2 mRNA levels upon TCR engagement and no longer require costimulation. This rewiring of signaling pathways is similar to that seen following reversal of AINR in CD8 T cells. Thus, CD8 and CD4 T cells appear to use distinct mechanisms, AINR and activation-induced cell death, respectively, to limit excessive clonal expansion following a productive response, while permitting important effector functions to be expressed.  相似文献   

4.
Expansion of CD4+CD28null T cells is a characteristic finding in patients with rheumatoid arthritis. Despite lacking CD28 molecules, these unusual CD4 T cells undergo clonal proliferation and form large and long-lived clonal populations. They produce high levels of IFN-gamma, exhibit autoreactivity, and have cytolytic function. The mechanisms facilitating the expansion and longevity of CD4+CD28null T cell clones in vivo are unknown. Here, we report that CD4+CD28null, but not CD4+CD28+, T cells express MHC class I-recognizing receptors normally found on NK cells. CD4+CD28null T cells preferentially expressed killer cell activating receptors (KAR), often in the absence of killer cell inhibitory receptors. Cross-linking of KAR molecules enhanced the proliferative response to TCR-mediated stimulation, but not the cytolytic function of CD4+CD28null T cells, suggesting different signaling pathways in CD4 T cells and NK cells. Triggering of KAR signaling led to the phosphorylation of several cellular targets, although the pattern of phosphorylation differed from that induced by the TCR. Aberrant expression of KAR molecules in the absence of inhibitory receptors and in the appropriate HLA setting may lead to the clonal outgrowth of autoreactive CD4+CD28null T cells commonly seen in rheumatoid arthritis.  相似文献   

5.
Ag-presenting cells provide at least two distinct signals for T cell activation. T cell receptor-dependent stimulation is provided by presentation of a specific peptide Ag in association with MHC molecules. In addition, APC also supply costimulatory signals required for T cell activation that are neither Ag- nor MHC restricted. One such costimulatory signal is mediated via the interaction of B7 on APC with the CD28 receptor on T cells. Recently, CTLA-4 has been shown to be a second B7 receptor on T cells. In the present report, we have examined the expression of CD28 and CTLA-4 on a panel of resting and activated normal T cell subsets and T cell clones by RNA blot analysis in an attempt to determine whether their expression defines reciprocal or overlapping subsets. CD28 was detected in resting T cells, whereas CTLA-4 was not. After stimulation with PHA and PMA for 24 h, CTLA-4 mRNA was expressed in both the CD4+ and CD8+ subsets as well as in CD28+ T cells. We examined 37 human and six murine T cell clones that had been previously characterized for their cytokine production. After activation, CTLA-4 and CD28 mRNA were coexpressed in 36 of 37 human T cell clones and all six murine T cell clones. These included T cells of CD4+8-, CD4-8+, and CD4-8- phenotypes as well as clones with Th1 and Th2 cytokine profiles. In contrast, CD28 but not CTLA-4 mRNA was detected in leukemic T cell lines and myelomas. CTLA-4 and B7 mRNA but not CD28 mRNA was detected in two long term HTLV-I-transformed T cell lines. These data demonstrate that CD28 and CTLA-4 mRNA are coexpressed in most activated T cells and T cell clones, providing evidence that they do not define reciprocal subsets. Moreover, they are consistent with the hypothesis that B7 transmits its signal through a single receptor, CD28, on resting T cells, and multiple receptors, CD28 and CTLA-4, on activated T cells.  相似文献   

6.
7.
Neurons have been neglected as cells with a major immune-regulatory function because they do not express major histocompatibility complex class II. Our data show that neurons are highly immune regulatory, having a crucial role in governing T-cell response and central nervous system (CNS) inflammation. Neurons induce the proliferation of activated CD4+ T cells through B7-CD28 and transforming growth factor (TGF)-beta1-TGF-beta receptor signaling pathways, resulting in amplification of T-cell receptor signaling through phosphorylated ZAP-70, interleukin (IL)-2 and IL-9. The interaction between neurons and T cells results in the conversion of encephalitogenic T cells to CD25+ TGF-beta1+ CTLA-4+ FoxP3+ T regulatory (Treg) cells that suppress encephalitogenic T cells and inhibit experimental autoimmune encephalomyelitis. Suppression is dependent on cytotoxic T lymphocyte antigen (CTLA)-4 but not TGF-beta1. Autocrine action of TGF-beta1, however, is important for the proliferative arrest of Treg cells. Blocking the B7 and TGF-beta pathways prevents the CNS-specific generation of Treg cells. These findings show that generation of neuron-dependent Treg cells in the CNS is instrumental in regulating CNS inflammation.  相似文献   

8.
Although positive CD28 costimulation is needed for the generation of natural CD4+CD25+ regulatory T cells, we report that negative CTLA-4 costimulation is necessary for generating phenotypically and functionally similar adaptive CD4+CD25+ suppressor cells. TGF-beta could not induce CD4+CD25- cells from CTLA-4(-/-) mice to express normal levels of FoxP3 or to develop suppressor activity. Moreover, blockade of CTLA-4 following activation of wild-type CD4+ cells abolished the ability of TGF-beta to induce FoxP3-expressing mouse suppressor cells. TGF-beta accelerated expression of CTLA-4, and time course studies suggested that CTLA-4 ligation of CD80 shortly after T cell activation enables TGF-beta to induce CD4+CD25- cells to express FoxP3 and develop suppressor activity. TGF-beta also enhanced CD4+ cell expression of CD80. Thus, CTLA-4 has an essential role in the generation of acquired CD4+CD25+ suppressor cells in addition to its other inhibitory effects. Although natural CD4+CD25+ cells develop normally in CTLA-4(-/-) mice, the lack of TGF-beta-induced, peripheral CD4+CD25+ suppressor cells in these mice may contribute to their rapid demise.  相似文献   

9.
Whereas B7-1/B7-2 and CD28/cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) serve as the main switches regulating the clonal composition of activated naive T cells, other B7 family members fine-tune the expansion and properties of activated T cells. Inducible costimulatory molecule (ICOS)-B7h promotes T-dependent antibody isotype switching and expansion of effector cells. Effector T cells trafficking into inflamed tissues interact with antigen-presenting cells there and are regulated by PD-1 and its ligands. B7-H3 and B7x could control the interaction between effector T cells and the peripheral tissues. The different varieties of regulatory T cells could regulate both naive T cell activation and effector function through costimulatory receptor/ligands.  相似文献   

10.
IL-2-deficient mice develop a lymphoproliferative and autoimmune disease characterized by autoimmune hemolytic anemia (AHA) and inflammatory bowel disease. We have previously reported that IL-2 is necessary for optimal up-regulation of CTLA-4, an inducible negative regulator of T cell activation. In this study, we have tested the hypothesis that reduced expression of CTLA-4 in IL-2-deficient T cells contributes to the pathogenesis of disease in IL-2-deficient mice. Expression of CTLA-4 as a transgene completely prevented lymphoaccumulation and AHA in IL-2-deficient mice. The normalization of T cell numbers was due to inhibition of expansion of conventional CD4+CD25- T cells rather than to rescue of the numbers or function of CD4+CD25+ regulatory T cells, suggesting that CTLA-4 expression on conventional T cells plays a role in maintaining normal T cell homeostasis. In addition, the inhibitory effect of the CTLA-4 transgene on T cell expansion was at least in part independent of CD28 expression. Our results suggest that deficient CTLA-4 expression on conventional T cells contributes to the pathophysiology of the lymphoproliferative disease and AHA in IL-2-deficient mice. Thus, restoring CTLA-4 expression in T cells may be an attractive strategy to control clinical autoimmune diseases in which CTLA-4 expression is reduced.  相似文献   

11.
细胞毒T淋巴细胞抗原-4(CTLA-4)是激活的T细胞表达的一种膜蛋白,属免疫球蛋白超家族成员,它通过与B7分子的结合来阻止共刺激信号的传递,抑制抗原特异性T淋巴细胞的增殖活化,起到抑制免疫反应及诱导免疫耐受的作用。CTLA-4在自身免疫病、过敏性疾病、感染、肿瘤及抗移植排斥等领域具有广阔的应用前景。简要综述了CTLA-4的基因、分子结构,及其与T细胞应答的关系。  相似文献   

12.
Key players on the immunosurveillance program, T cells are regulated by their surface receptors such as T-cell receptor (TCR), and costimulatory molecules, optimizing T-cell activation. Some of these costimulatory molecules, such as the cytotoxic T-lymphocyte antigen 4 (CTLA-4), induce inhibitory effects on T cells. By "inhibiting the inhibitor" CTLA-4-blocking monoclonal antibodies represent a novel class of weapons against cancers. To better understand the promising future and the limits of this immunotherapy, this review dissects the molecular inhibitory mechanisms induced by CTLA-4 in T cells.  相似文献   

13.
CD4+ T cells enhance tumor destruction by CD8+ T cells. One benefit that underlies CD4+ T cell help is enhanced clonal expansion of newly activated CD8+ cells. In addition, tumor-specific CD4+ help is also associated with the accumulation of greater numbers of CD8+ T cells within the tumor. Whether this too is attributable to the effects of help delivered to the CD8+ cells during priming within secondary lymphoid tissues, or alternatively is due to the action of CD4+ cells within the tumor environment has not been examined. In this study, we have evaluated separately the benefits of CD4+ T cell help accrued during priming of tumor-specific CD8+ T cells with a vaccine, as opposed to the benefits delivered by the presence of cognate CD4+ cells within the tumor. The presence of CD4+ T cell help during priming increased clonal expansion of tumor-specific CD8+ T cells in secondary lymphoid tissue; however, CD8+ T cells that have low avidity for tumor Ag were inefficient in tumor invasion. CD4+ T cells that recognized tumor Ag were required to facilitate accumulation of CD8+ T cells within the tumor and enhance tumor lysis during the acute phase of the response. These experiments highlight the ability of tumor-specific CD4+ T cells to render the tumor microenvironment receptive for CD8+ T cell immunotherapy, by facilitating the accumulation of all activated CD8+ T cells, including low-avidity tumor-specific and noncognate cells.  相似文献   

14.
CTLA-4 has been shown to be an important negative regulator of T cell activation. To better understand its inhibitory action, we constructed CTLA-4 transgenic mice that display constitutive cell surface expression of CTLA-4 on CD4 and CD8 T cells. In both in vivo and in vitro T cell responses, CTLA-4 overexpression inhibits T cell activation. This inhibition is dependent on B7 and CD28, suggesting that overexpressed CTLA-4 inhibits responses by competing with CD28 for B7 binding or by interfering with CD28 signaling. In addition, expression of the transgene decreases the number of CD25+Foxp3+ T cells in these mice, but does not affect their suppressive ability. Our data confirm the activity of CTLA-4 as a negative regulator of T cell activation and that its action may be by multiple mechanisms.  相似文献   

15.
CD28 and CTLA-4 (CD152) play a pivotal role in the regulation of T cell activation. Upon ligation by CD80 (B7-1) or CD86 (B7-2), CD28 induces T cell proliferation, cytokine production, and effector functions, whereas CTLA-4 signaling inhibits expansion of activated T cells and induces tolerance. Therefore, we hypothesized that co-stimulatory molecules that preferentially bind CD28 or CTLA-4 would have dramatically altered biological properties. We describe directed molecular evolution of CD80 genes derived from human, orangutan, rhesus monkey, baboon, cat, cow, and rabbit by DNA shuffling and screening. In contrast to wild-type CD80, the evolved co-stimulatory molecules, termed CD28-binding protein (CD28BP) and CTLA-4-binding protein (CTLA-4BP), selectively bind to CD28 or CTLA-4, respectively. Furthermore, CD28BP has improved capacity to induce human T cell proliferation and interferon-gamma production compared with wild-type CD80. In contrast, CTLA-4BP inhibited human mixed leukocyte reaction (MLR) and enhanced interleukin 10 production in MLR, supporting a role for CTLA-4BP in inducing T cell anergy and tolerance. In addition, co-stimulation of purified human T cells was significantly suppressed when CTLA-4BP was cotransfected with either CD80 or CD28BP. The amino acid sequences of CD28BP and CTLA-4BP were 61 and 96% identical with that of human CD80 and provide insight into the residues that are critical in the ligand binding. These molecules provide a new approach to characterization of CD28 and CTLA-4 signals and to manipulation of the T cell response.  相似文献   

16.
The inhibitory molecule CD85/LIR-1/ILT2 has been detected previously on the surface of a small proportion of T lymphocytes. In this study, evidence is provided that, although only a fraction of CD3+ cells are stained by mAb specific for CD85/LIR-1/ILT2 on their surface, this inhibitory receptor is present in the cytoplasm of all T lymphocytes, and that it is detectable on the surface of all T cell clones by the M402 mAb. Biochemical analyses further demonstrate that CD85/LIR-1/ILT2 is present in all T clones analyzed, and that the protein is tyrosine-phosphorylated. Expression of mRNA coding for CD85/LIR-1/ILT2 has been assessed by RT-PCR. Notably, in the NKL cell line and in one T cell clone, amplification of the messenger required 30 cycles only, whereas, in other T cell clones, an amplification product was detected by increasing the number of cycles. CD85/LIR-1/ILT2 inhibits CD3/TCR-mediated activation in both CD4+ and CD8+ clones, and it down-regulates Ag recognition by CD8+ cells in a clonally distributed fashion. Addition of anti-ILT2 HP-F1 mAb in the cytolytic assay enhances target cell lysis mediated by Ag-specific CTL. This could be due to interference of the mAb with receptor/ligand interactions. In contrast, HP-F1 mAb cross-linking triggers inhibitory signals that reduce cytotoxicity. CD85/LIR-1/ILT2 also controls responses to recall Ags and, in low responders, its engagement sharply increases T cell proliferation. The inhibitory function of the molecule is also confirmed by its ability to reduce CD3/TCR-induced intracellular Ca2+ mobilization.  相似文献   

17.
Pancreatic islet endothelial cells (ECs) form the barrier across which autoreactive T cells transmigrate during the development of islet inflammation in type 1 diabetes. Little is known about the immune phenotype of islet ECs that might shape their molecular interaction with autoreactive T cells before and during the development of islet inflammation. In this study we examined the expression and functional significance of costimulatory molecules by human islet ECs. Freshly isolated human islet ECs constitutively expressed CD86 (B7-2) and ICOS ligand but not CD80 (B7-1) or CD40 costimulatory molecules. The functional activity of islet EC-expressed CD86 was examined by coculture of resting islet ECs with CD4 T cells stimulated by CD3 ligation alone. Marked T cell proliferation in the coculture was completely abrogated by mAb blockade of CD86, confirming that costimulatory properties are conferred on ECs by CD86 expression. In view of its location on the vasculature, we hypothesized a role for CD86 in T cell adhesion/transmigration. In keeping with this, adhesion/transmigration of activated (CD3 ligated) memory (CD45R0(+)) CD4 T cells across islet ECs was completely inhibited in the presence of CD86 blocking mAb. Identical results were obtained for T cell adhesion using either CTLA-4 blocking mAb or CTLA-4Ig (abatacept), indicating CTLA-4 as the T cell ligand for these CD86-mediated effects. These data suggest a novel role for CD86 expression on the microvasculature, whereby ligation of CTLA-4 on CD4 T cells by CD86 on islet ECs is key to the adhesion of recently activated T cells.  相似文献   

18.
Over the past few years a great deal of research has examined how T cell-dependent immune responses are initiated and subsequently regulated. Ligation of the TCR with an antigenic peptide bound to an MHC protein on a professional APC provides the crucial antigen-specific stimulus required for T cell activation. Interaction of CD28 with CD80 or CD86 molecules on APC initiates a costimulatory or second signal within the T cell which augments and sustains T cell activation initiated through the TCR. However, recently it has become clear that T cell immune responses are a result of a balance between stimulatory and inhibitory signals. Cytotoxic T lymphocyte-associated molecule-4 (CTLA-4) is a cell surface molecule that is expressed nearly exclusively on CD4+ and CD8+ T cells. Investigation into the role of CTLA-4 in the regulation of T cell immune responses has revealed that CTLA-4 is a very important molecule involved in the maintenance of T cell homeostasis. In the present review, evidence for the proposed inhibitory role of CTLA-4 is examined and a model suggesting a role for CTLA-4 in both early and late stages of T cell activation is presented.  相似文献   

19.
The ability of activated T cells to present foreign antigens through the MHC class II pathway has been shown in the case of human, rat and mouse T cells. In the present study, the ability of activated T cells to present their endogenous TCR in association with MHC class II molecules to CD4+ T cells was shown. Upon activation mouse T cells downregulate their surface TCR, which are degraded into peptides in endosomal/lysosomal compartments. The idiopeptides (peptides derived from the variable region of the TCR) are presented to cognate anti-idiotypic CD4+ T cells, resulting in activation and proliferation of these cells. Interaction of idiotypic and anti-idiotypic T cells brought about by presentation of TCR idiopeptide may have important implications for T-cell vaccination and perpetuation of T-cell memory not requiring persisting antigen or long-lived memory cells.  相似文献   

20.
Pertussis toxin (PTX) has pronounced adjuvant activity and strongly enhances innate and adaptive immune responses, including increased antibody production and Th1/Th2 cytokine production. Adjuvant effects of PTX on Th1 and Th2 cells are primarily mediated via CD80/86 costimulation via enhanced expression of these molecules by APCs. However, it has remained unresolved whether PTX modulates the expression of costimulatory and inhibitory molecules on CD4+ and CD8+ T cells. To address this question, we determined the expression kinetics of CD28, CTLA-4, and CD40L on spleen CD4+ and CD8+ T cells after incubation with PTX. The results show that PTX upregulated the expression of CD28 by CD8+ T cells, but not by CD4+ T cells. In contrast, the expression of CTLA-4 and CD40L was not substantially altered on CD4+ or CD8+ T cells. CD28 upregulation by CD8+ T cells was paralleled by upregulation of CD69 and the induction of IFN-γ, Granzyme B (GrB), and IL-17. CD8+ T cell activation and cytokine production could be substantially blocked with anti-CD80 and CD86 antibodies, consistent with CD28 mediated signaling. Treatment of highly purified CD8+ T cells with PTX resulted in upregulation of CD28 and CD69, and production of IFN-γ. Incubation with CD28 mAb further enhanced this effect, suggesting that PTX has direct effects on CD8+ T cells which are enhanced by CD80/86-mediated costimulation provided by APCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号