首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Introduction Because of its restricted distribution in normal tissues and its high expression on tumors of neuroectodermal origin, GD2 ganglioside is an excellent target for active specific immunotherapy. However, GD2 usually elicits low-titered IgM and no IgG or cellular immune responses, limiting its usefulness as a vaccine for cancer patients. We have previously shown that anti-idiotypic monoclonal antibody mimics of GD2 can induce antigen-specific humoral and cellular immunity in mice, but inhibition of tumor growth by the mimics could not be detected. Methods and results Here, we isolated two peptides from phage display peptide libraries by panning with GD2-specific mAb ME361. The peptides inhibited binding of the mAb to GD2. When coupled to keyhole limpet hemocyanin (KLH) or presented as multiantigenic peptides in QS21 adjuvant, the peptides induced in mice antibodies binding specifically to GD2 and delayed-type hypersensitive lymphocytes reactive specifically with GD2-positive D142.34 mouse melanoma cells. Induction of delayed-type hypersensitivity (DTH) reaction was dependent on CD4-positive lymphocytes. The immunity elicited by the peptides significantly inhibited growth of GD2-positive melanoma cells in mice. Conclusion Our study suggests that immunization with peptides mimicking GD2 ganglioside inhibits tumor growth through antibody and/or CD4-positive T cell-mediated mechanisms. Cytolytic T lymphocytes most likely do not play a role. Our results provide the basis for structural analysis of carbohydrate mimicry by peptides. A. Wondimu and T. Zhang contributed equally to this work.  相似文献   

2.
Owing to their exposure on the cell surface and the possibility of being directly recognized with specific antibodies, glycosphingolipids have aroused great interest in the field of stem cell biology. In the search for specific markers of the differentiation of human bone marrow mesenchymal stem cells (hBMSCs) toward osteoblasts, we studied their glycosphingolipid pattern, with particular attention to gangliosides. After lipid extraction and fractionation, gangliosides, metabolically 3H-labeled in the sphingosine moiety, were separated by high-performance TLC and chemically characterized by MALDI MS. Upon induction of osteogenic differentiation, a 3-fold increase of ganglioside GD1a was observed. Therefore, the hypothesis of GD1a involvement in hBMSCs commitment toward the osteogenic phenotype was tested by comparison of the osteogenic propensity of GD1a-highly expressing versus GD1a-low expressing hBMSCs and direct addition of GD1a in the differentiation medium. It was found that either the high expression of GD1a in hBMSCs or the addition of GD1a in the differentiation medium favored osteogenesis, providing a remarkable increase of alkaline phosphatase. It was also observed that ganglioside GD2, although detectable in hBMSCs by immunohistochemistry with an anti-GD2 antibody, could not be recognized by chemical analysis, likely reflecting a case, not uncommon, of molecular mimicry.  相似文献   

3.
The immunology of human papillomavirus (HPV) infections has peculiar characteristics. The long latency for cervical cancer development after primary viral infection suggests mechanisms that may aid the virus in avoiding the host immunosurveillance and establishing persistent infections. In order to understand whether molecular mimicry phenomena might explain the ability of HPV to avoid a protective immune response by the host cell, sequence similarity between HPV16 E7 oncoprotein and human self-proteins was examined by computer-assisted analysis. Data were obtained showing that the HPV16 E7 protein has high and widespread similarity to several human proteins involved in a number of critical regulatory processes. In addition, multiple identical and different E7 peptide motifs are present in the same human protein. Thus, sharing of common motifs between viral oncoproteins and molecules of normal cells may be one cause underlying the scarce immunogenicity of HPV infections. The hypothesis is advanced that synthetic peptides harbouring viral motifs not and/or scarcely represented in the host's cellular proteins may represent a valuable immunotherapeutic approach for cervical cancer treatment.  相似文献   

4.
5.
The interactions of dpPC with ganglioside GD3 and two lactones, GD3LacI or GD3LacII, in lipid monolayers occur with reduced, unaltered, or increased molecular area and surface potential/molecule, respectively. dpPC is fully miscible with GD3 and GD3LacI but films with GD3LacII show immiscibility above 75 mol% lactone. At low proportions of GD3 in mixtures with dpPC, GD3 undergoes condensation and depolarization; dpPC is depolarized and its molecular area is reduced above 50 mol% GD3. GD3LacI forms ideally mixed films with dpPC. Mixtures of dpPC with GD3LacII at mole fractions below 0.3 show increased mean molecular area and surface potential/molecule mostly due to lactone alterations. Between mole fractions of 0.3 and 0.75 the surface parameters of dpPC are altered, and above these proportions both lipids are immiscible. Defined variations of molecular properties induced by ganglioside lactonization are selectively transduced to changes of the intermolecular organization and surface electrostatics in mixed interfaces with dpPC. Thus, changes in the relative proportions of a ganglioside and its lactone forms may act as sensitive biotransducers for membrane-mediated cellular functions, without the need for metabolically altering the concentration of gangliosides.  相似文献   

6.
We reported that ganglioside GD3 enhances cell proliferation and invasion of melanomas causing stronger tyrosine-phosphorylation of p130Cas and paxillin after stimulation with fetal calf serum. Besides signals via growth factor/receptor, adhesion signals via integrin might be also enhanced by GD3. Here, roles of integrin-mediated signaling in the cell proliferation and invasion, and in the activation of adaptor molecules were examined, showing that integrin was also important for the cell growth and invasion. p130Cas and paxillin underwent stronger tyrosine-phosphorylation in GD3+ cells than in GD3− cells during the adhesion in the absence of serum. On the other hand, no proteins underwent tyrosine phosphorylation in GD3+ and GD3− cells in a suspension state when stimulated with fetal calf serum. These results suggested that integrin-mediated signaling is essential in the effects of GD3 on the malignant properties of melanomas. Co-localization of GD3 and integrin at the focal adhesion supported these results.  相似文献   

7.
8.
Neuroblastoma is the most common extracranial solid tumor in children and tumor ganglioside composition has been linked to its biological and clinical behavior. We recently found that high expression of complex gangliosides that are products of the enzyme GM1a/GD1b synthase predicts a more favorable outcome in human neuroblastoma, and others have shown that complex gangliosides such as GD1a inhibit metastasis of murine tumors. To determine how a switch from structurally simple to structurally complex ganglioside expression affects neuroblastoma cell behavior, we engineered IMR32 human neuroblastoma cells, which contain almost exclusively (89%) the simple gangliosides (SG) GM2, GD2, GM3, and GD3, to overexpress the complex gangliosides (CG) GM1, GD1a, GD1b and GT1b, by stable retroviral-mediated transduction of the cDNA encoding GM1a/GD1b synthase. This strikingly altered cellular ganglioside composition without affecting total ganglioside content: There was a 23-fold increase in the ratio of complex to simple gangliosides in GM1a/GD1b synthase-transduced cells (IMR32-CG) vs. wild type (IMR32) or vector-transfected (IMR32-V) cells with essentially no expression of the clinical neuroblastoma marker, GD2, confirming effectiveness of this molecular switch from simple to complex ganglioside synthesis. Probing for consequences of the switch, we found that among functional properties of IMR32-CG cells, cell migration was inhibited and Rho/Rac1 activities were altered, while proliferation kinetics and cell differentiation were unaffected. These findings further implicate cellular ganglioside composition in determining cell migration characteristics of tumor cells. This IMR32 model system should be useful in delineating the impact of ganglioside composition on tumor cell function.  相似文献   

9.
The ganglioside composition of 59 meningiomas has been compared with a molecular genetic analysis of chromosome 22 in the same specimens. Major gangliosides were GM3 (II3NeuAc-LacCer) and/or GD3 [II3(NeuAc)2-LacCer]. In specimens with no or partial deletions of chromosome 22, the GM3 ganglioside predominated, and the mean value for GM3, 61% of total sialic acid, was around four times higher than that for GD3. A loss of chromosome 22, found in 56% of the specimens, was shown to be associated with an increase in the proportion of ganglioside GD3, with the ratio between mean values of GM3 and GD3 being approximately 1:1. Logistic regression revealed that the probability of predicting monosomy of chromosome 22 by the GD3 proportion was 66%.  相似文献   

10.
Short-term and long-term (greater than 7 months) cultured astrocytes from 14-day-old rat brain were analyzed for ganglioside content. Analysis of the extracted gangliosides by HPTLC revealed that ganglioside GM1 was absent in 35 days and 235 days cultured astrocytes, and that the predominant ganglioside was GM3, showing a double band in both cases. A small amount of the disialogangliosides (GD3, GD1a) was also detected. More than 70% of radioactivities into ganglioside fractions by cultured astrocytes, in the presence of N-[3H]-acetylmannosamine, appeared in ganglioside GM3. The upper band component of GM3 increased 60% in long-term astrocyte cultures compared to 35-day-old cultures. Also, an increased GD3 content in long-term astrocyte cultures was detected. These results suggest that the increase of GD3 and upper band GM3 in long-term cultured astrocytes might be related to the appearance of small processes showing strong reactivity against GFAP and vimentin during astrocyte-subculture.  相似文献   

11.
Botulinum neurotoxin type B (BoNT/B) initiates its toxicity by binding to synaptotagmin II (SytII) and gangliosides GD1a and GT1b on the neural membrane. We synthesized two 27-residue peptides that carry the BoNT/B binding sites on mouse SytII (mSytII 37–63) or human SytII (hSytII 34–60). BoNT/B bound to these peptides, but showed substantially higher binding to mSytII peptide than to hSytII peptide. The mSytII peptide inhibited almost completely BoNT/B binding to synaptosomes (snps) and displayed a high affinity. BoNT/B bound strongly to mSytII peptide and binding was inhibited by the peptide. Binding of BoNT/B to snps was also inhibited (~80 %) by a larger excess of gangliosides GD1a or GT1b. The mSytII peptide inhibited very strongly (at least 80 %) the toxin binding to snps, while the two gangliosides were much less efficient inhibitors requiring much larger excess to achieve similar inhibition levels. Furthermore, gangliosides GD1a or GT1b inhibited BoNT/B binding to mSytII peptide at a much larger excess than the inhibition by mSytII peptide. Conversely, BoNT/B bound well to each ganglioside and binding could be inhibited by the correlate ganglioside and much less efficiently by the mSytII peptide. There was no apparent collaboration between mSytII peptide and either ganglioside. mSytII peptide displayed some protective activity in vivo in mice against a lethal BoNT/B dose. We concluded that SytII peptide and gangliosides bind independently but, with their binding sites on BoNT/B being spatially close, each can influence BoNT/B binding to the other due to regional conformational perturbations or steric interference or both. Ganglioside involvement in BoNT/B binding might help in toxin translocation and endocytosis.  相似文献   

12.
Monoclonal antibodies targeting GD2 ganglioside (GD2) have recently been approved for the treatment of high risk neuroblastoma and are extensively evaluated in clinics in other indications. This study illustrates how a therapeutic antibody distinguishes between different types of gangliosides present on normal and cancer cells and informs how synthetic peptides can imitate ganglioside in its binding to the antibody. Using high resolution crystal structures we demonstrate that the ganglioside recognition by a model antibody (14G2a) is based primarily on an extended network of direct and water molecule mediated hydrogen bonds. Comparison of the GD2-Fab structure with that of a ligand free antibody reveals an induced fit mechanism of ligand binding. These conclusions are validated by directed mutagenesis and allowed structure guided generation of antibody variant with improved affinity toward GD2. Contrary to the carbohydrate, both evaluated mimetic peptides utilize a “key and lock” interaction mechanism complementing the surface of the antibody binding groove exactly as found in the empty structure. The interaction of both peptides with the Fab relies considerably on hydrophobic contacts however, the detailed connections differ significantly between the peptides. As such, the evaluated peptide carbohydrate mimicry is defined primarily in a functional and not in structural manner.Malignant transformation is universally accompanied by changes in cell surface glycosylation. A glycolipid, GD2 ganglioside (GD2)1, is one of the most prominent tumor-associated antigens, ranking in the 12th position of the NCI prioritized list of cancer vaccine targets (1). GD2 is embedded in the outer plasma membrane with its ceramide tail (fatty acid coupled sphingosine). The sugar moiety is exposed to the extracellular milieu and is composed of glucose (Glc; linked to ceramide), galactose (Gal) and N-acetylgalactosamine (GalNAc). Two additional sialic acid residues (N-acetylneuraminic acid, NeuAc) branch form Gal and provide GD2 with a negative charge (Fig. 1). Overexpression of GD2 is well documented in neuroblastoma, melanoma, certain osteosarcomas, small cell lung cancers, and soft tissue sarcomas (24).Open in a separate windowFig. 1.Recognition of GD2 ganglioside by monoclonal antibody 14G2a at the cell surface. (top panel) Antigen combining region of 14G2a antibody recognizes the sugar moiety of GD2 ganglioside (yellow), which is exposed to the extracellular milieu. The lipid part of the ganglioside is buried inside the cell membrane. GD2 bound Fab structure determined in this study is shown in color. Fc fragment (PDB ID: 1igt) and membrane model derived from published data are shown in corresponding scale and colored gray. (bottom panel) Chemical structure of GD2 ganglioside and sugar ring nomenclature used throughout the study.The concept of therapeutic targeting of GD2 is currently most advanced in neuroblastoma, the most common extracranial tumor of childhood. Neuroblastoma is a heterogenous and complex disease. Spontaneous remissions are sometimes observed, but more than a half of the patients are diagnosed with a high-risk neuroblastoma of poor prognosis. This highlights the demand for treatment modalities that would offer major clinical benefits for this group of patients (5). High and stable presence of GD2 on cancer cells in neuroblastoma and limited expression on relevant normal tissues (i.e. neurons, peripheral nerve fibers and skin melanocytes) allows diagnosis, detection of metastases, treatment monitoring and, most importantly, targeting of the tumor itself.GD2-specific monoclonal antibodies have been extensively tested in clinics. This includes a mouse 14G2a antibody (IgG2a; derived from a mouse 14.18 antibody of IgG3 subclass), and improved modifications thereof including a chimeric antibody ch14.18, and recently a humanized antibody hu14.18K322A. Moreover, mouse 3F8 antibody (IgG3) and recently its humanized derivative hu3F8 were also evaluated. The antibodies were demonstrated to engage antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) against neuroblastoma (5). Additionally, direct cytotoxic effects were observed in neuroblastoma models (6). The results of a randomized clinical trial published in 2010, evaluating ch14.18, interleukin-2 and granulocyte and macrophage-colony stimulating factor combined with a standard maintenance agent 13-cis retinoic acid demonstrated significant improvement of outcome in high-risk neuroblastoma patients (7). Based on these and further findings, the Food and Drug Administration (FDA) has just recently approved Unituxin (dinutuximab; ch14.18) combination therapy for high risk neuroblastoma (8). Therefore, the standard care treatment protocols may now be extended with monoclonal antibodies targeting GD2 for a better expected outcome.Antibodies against gangliosides other than GD2 are considered as potential therapeutic agents in different types of cancer. Ganglioside-specific antibodies are moreover involved in various types of autoimmune diseases (9). Nevertheless, the molecular mechanism of ganglioside recognition remains unknown because not a single crystal structure of antibody–ganglioside complex has been determined to date. In particular, it is not known how the specificity against GD2 is achieved in antibodies evaluated in clinics. Although crystal structures of empty ME36.1 antibody specific for GD2 and GD3 (10) and empty 3F8 antibody specific for GD2 (11) were determined, the conclusions concerning GD2 binding have to be treated with caution because of general limitations in reliable prediction of binding modes of complex, flexible ligands in dynamic pockets.The success of GD2-specific antibodies in treatment of neuroblastoma fuels investigation on active immunization strategies. To overcome poor antigenicity of GD2, glycolipid surrogates including peptide mimetics are being developed. The idea of a peptide vaccine eliciting anticarbohydrate response has been precedented in the case of Group B Streptococcus polysaccharide (12). Multiple peptides mimicking GD2 in its binding to specific antibodies were selected using phage display (13, 14) and some have been demonstrated to elicit protective, GD2 directed response in preclinical studies. However, the structural basis of peptide-ganglioside mimicry and its relation to the potential of particular peptides to induce GD2 directed immune response remain unknown.Here, we analyze the interactions guiding ganglioside recognition by an antibody and the structural basis of peptide-ganglioside mimicry. The crystal structure of Fab fragment of 14G2a antibody in a complex with the sugar moiety of GD2 ganglioside is provided and the binding mode is discussed in detail. Structure of an empty 14G2a antibody is reported for reference. The major conclusions are verified by directed mutagenesis and antibody variant with increased affinity toward GD2 is developed using structure guided approach. The binding modes of two largely divergent peptide mimics of GD2 (15) at the antigen-binding site of 14G2a antibody are reported and compared with that of the carbohydrate. Mouse 14G2a antibody was chosen for this study because it contains the same antigen binding region as the ch14.18 chimeric antibody recently approved by FDA (8).  相似文献   

13.
GD1b and GD1b-lactone (GD1b-L) gangliosides bind to the same extent to a P2 crude membrane preparation from rat brain. After 30 min of incubation with 10?4, 105, and 10?6 Absolutions of ganglioside, 1,800, 450, and 100 pmol of ganglioside/mg of protein, respectively, were found to be stably associated to the P2 fraction. This association modifies the phosphorylation process of the P2 membrane proteins in a dose-dependent manner, the maximal effect being reached at a ganglioside association of 1.85 nmol/mg of protein and in large part at 450 pmol/mg of protein. The effects of GD1b and GD1b-L on the phosphorylation of five proteins, showing apparent molecular masses of 17, 20, 36, 41, and 44 kDa, were different after 0.5 min of phosphorylation reaction as well as after 15 min. After 0.5 min of reaction, in the presence of stably associated GD1b, the phosphorylation of the 36-, 41-, and 44-kDa proteins was increased with reference to the control, whereas the phosphorylation of the 17- and 20-kDa proteins was decreased. GD1b-L exerted qualitatively similar effects only on the 44-, 41-, and 36-kDa proteins and to a strongly reduced degree. After 15 min of reaction, only the phosphorylation of the 36-kDa protein was stimulated by GD1b; GD1b-L exerted a similar effect, but to a low degree.  相似文献   

14.
分子模拟与微生物、自身免疫交叉识别以及肿瘤免疫治疗   总被引:1,自引:0,他引:1  
胡兵  魏于全 《生命科学》2004,16(2):66-72
分子模拟是生物界广为存在的一种自然现象。细菌等病原微生物可利用蛋白质序列或结构的相似而模拟宿主细胞某些分子的功能,从而协助其入侵与存活;另一方面,微生物也可因某些蛋白质的同源或相似而致宿主交叉免疫反应,导致自身免疫参与自身免疫疾病的发生,其本质是一种交叉识别。本室及其他研究小组发现可利用不同种属某些肿瘤相关同源分子的异源性激发特异的免疫反应,并因其同源性而交叉反应于宿主分子,从而产生抗肿瘤的自身免疫,亦即通过异种同源分子的策略主动免疫治疗肿瘤。这种模拟还可以在表位肽的水平进行,相信分子模拟的深入研究将有助于揭示进化与分子识别的本质以及自身免疫的规律,从而探索分子模拟在疾病预防与治疗中的应用。  相似文献   

15.
We studied in this work the in vivo phosphorylation of the epidermal growth factor receptor (EGFr) in skin from knockout mice lacking different ganglioside glycosyltransferases. Results show an enhancement of EGFr phosphorylation, after EGF stimulation, in skin from Sial-T2 knockout and Sial-T2/GalNAc-T double knockout mice as compared with wild-type and Sial-T1 knockout mice. Qualitative analysis of ganglioside composition in mice skin suggest that the increase of EGFr phosphorylation observed in skin from Sial-T2 knockout and Sial-T2/GalNAc-T double knockout mice in response to EGF might not be primary attributed to the expression of GD3 or a-series gangliosides in mice skin. These studies provide, for the first time, an approach for studying the molecular mechanisms involved in the in vivo regulation of EGFr function by gangliosides.  相似文献   

16.
Gangliosides are a large group of sialylated glycosphingolipids widely expressed in mammalian tissues. We have shown previously that the expression of 9-O-acetyl GD3 is highly correlated with periods of neurite outgrowth in the developing nervous system, and that the advance of dorsal root ganglia growth cones on laminin was halted in presence of an antibody specific for 9-O-acetyl GD3. In this work, we examined by immunocytochemistry and confocal microscopy whether this ganglioside is localized in point contacts in neuronal growth cones. We identified point contacts by immunoreactions with proteins, such as vinculin and beta1 integrin, known to be associated with these structures in growth cones. Our observations indicate that 9-O-acetyl GD3 is specifically associated with vinculin and beta1 integrin in point contacts of growth cones, suggesting a possible role for this particular ganglioside in the modulation of these contacts during neurite outgrowth.  相似文献   

17.
Gangliosides, complex glycosphingolipids containing sialic acids, have been found to reside in glycosphingolipid-enriched microdomains (GEM) at the plasma membrane. They are synthesized in the lumen of the Golgi complex and appear unable to translocate from the lumenal toward the cytosolic surface of Golgi membrane to access the monomeric lipid transport. As a consequence, they can only leave the Golgi complex via the lumenal surface of transport vesicles. In this work we analyzed the exocytic transport of the disialo ganglioside GD3 from trans-Golgi network (TGN) to plasma membrane in CHO-K1 cells by immunodetection of endogenously synthesized GD3. We found that ganglioside GD3, unlike another luminal membrane-bounded lipid (glycosylphosphatidylinositol-anchored protein), did not partition into GEM domains in the Golgi complex and trafficked from TGN to plasma membrane by a brefeldin A-insensitive exocytic pathway. Moreover, a dominant negative form of Rab11, which prevents exit of vesicular stomatitis virus glycoprotein from the Golgi complex, did not influence the capacity of GD3 to reach the cell surface. Our results strongly support the notion that most ganglioside GD3 traffics from the TGN to the plasma membrane by a non-conventional vesicular pathway where lateral membrane segregation of vesicular stomatitis virus glycoprotein (non-GEM resident) and glycosylphosphatidylinositol-anchored proteins (GEM resident) from GD3 is required before exiting TGN.  相似文献   

18.
Four kinds of anti-GD3 monoclonal antibodies, DSG-1, -2, -3, and -4, of the IgM class were obtained by the immunization of BALB/c mice with enzootic bovine leukosis tumor tissue-derived ganglioside GD3 inserted into liposomes with Salmonella minnesota R595 lipopolysaccharides. The specificities of the monoclonal antibodies obtained were defined by complement-dependent liposome immune lysis assay and by enzyme immunostaining on thin-layer chromatography. The reactivities of the monoclonal antibodies obtained to four ganglioside GD3 variants [GD3(NeuAc-NeuAc), GD3(NeuAc-NeuGc), GD3(NeuGc-NeuAc), and GD3(NeuGc-NeuGc)] were tested. All of the monoclonal antibodies were found to react with GD3(NeuAc-NeuAc) and GD3(NeuAc-NeuGc) but not with GD3(NeuGc-NeuAc) or GD3(NeuGc-NeuGc). Furthermore, various purified glycosphingolipids were used to determine the specificity of these monoclonal antibodies. All 4 antibodies reacted only with ganglioside GD3 [GD3(NeuAc-NeuAc) and GD3(NeuAc-NeuGc)], but not with several gangliosides linking the GalNAc, Gal beta 1-3GalNAc, NeuAc alpha 2-3Gal beta 1-3GalNAc, or NeuAc alpha 2-8NeuAc alpha 2-3Gal beta 1-3GalNAc residue to the Gal moiety of ganglioside GD3 (GD2, GD1b, GT1b, or GQ1b, respectively), ganglioside GT1a having the same terminal NeuAc alpha 2-8NeuAc alpha 2-3Gal residue as ganglioside GD3, other gangliosides, and neutral glycosphingolipids. These findings suggest that the 4 monoclonal antibodies obtained may be specific for the epitope of NeuAc-alpha 2-8Sia alpha 2-3Gal beta 1-4Glc residue of ganglioside GD3.  相似文献   

19.
Botulinum neurotoxins (BoNTs) and tetanus neurotoxin are the causative agents of the paralytic diseases botulism and tetanus, respectively. The potency of the clostridial neurotoxins (CNTs) relies primarily on their highly specific binding to nerve terminals and cleavage of SNARE proteins. Although individual CNTs utilize distinct proteins for entry, they share common ganglioside co-receptors. Here, we report the crystal structure of the BoNT/F receptor-binding domain in complex with the sugar moiety of ganglioside GD1a. GD1a binds in a shallow groove formed by the conserved peptide motif E … H … SXWY … G, with additional stabilizing interactions provided by two arginine residues. Comparative analysis of BoNT/F with other CNTs revealed several differences in the interactions of each toxin with ganglioside. Notably, exchange of BoNT/F His-1241 with the corresponding lysine residue of BoNT/E resulted in increased affinity for GD1a and conferred the ability to bind ganglioside GM1a. Conversely, BoNT/E was not able to bind GM1a, demonstrating a discrete mechanism of ganglioside recognition. These findings provide a structural basis for ganglioside binding among the CNTs and show that individual toxins utilize unique ganglioside recognition strategies.  相似文献   

20.
Campylobacter jejuni is well known for synthesizing ganglioside mimics within the glycan component of its lipooligosaccharide (LOS), which have been implicated in triggering Guillain-Barré syndrome. We now confirm that this pathogen is capable of synthesizing a much broader spectrum of host glycolipid/glycoprotein mimics within its LOS. P blood group and paragloboside (lacto-N-neotetraose) antigen mimicry is exhibited by RM1221, a strain isolated from a poultry source. RM1503, a gastroenteritis-associated strain, expresses lacto-N-biose and sialyl-Lewis c units, the latter known as the pancreatic tumor-associated antigen, DU-PAN-2 (or LSTa). C. jejuni GC149, a Guillain-Barré syndrome-associated strain, expresses an unusual sialic acid-containing hybrid oligosaccharide with similarity to both ganglio and Pk antigens and can, through phase variation of its LOS biosynthesis genes, display GT1a or GD3 ganglioside mimics. We show that the sialyltransferase CstII and the galactosyltransferase CgtD are involved in the synthesis of multiple mimic types, with LOS structural diversity achieved through evolving allelic substrate specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号