首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the role of abscisic acid (ABA) in altered stomatal responses of Tradescantia virginiana leaves grown at high relative air humidity (RH) was investigated. A lower ABA concentration was found in leaves grown at high RH compared with leaves grown at moderate RH. As a result of a daily application of 20 microM ABA to leaves for 3 weeks during growth at high RH, the stomata of ABA-treated leaves grown at high RH showed the same behaviour as did the stomata of leaves grown at moderate RH. For example, they closed rapidly when exposed to desiccation. Providing a high RH around a single leaf of a plant during growth at moderate RH changed the stomatal responses of this leaf. The stomata in this leaf grown at high RH did not close completely in response to desiccation in contrast to the stomata of the other leaves from the same plant. The ABA concentration on a fresh weight basis, though not on a dry weight basis, of this leaf was significantly lower than that of the others. Moreover, less closure of stomata was found in the older leaves of plants grown at high RH in response to desiccation compared with younger leaves. This was correlated with a lower ABA concentration in these leaves on a fresh weight basis, though not on a dry weight basis. Stomata of leaves grown at moderate RH closed in response to short-term application of ABA or sodium nitroprusside (SNP), while for leaves grown at high RH there was a clear difference in stomatal responses between the leaf margins and main-vein areas. The stomatal aperture in response to short-term application of ABA or SNP at the leaf margins of leaves grown at high RH remained significantly wider than in the main-vein areas. It was concluded that: (i) a long-term low ABA concentration in well-watered plants during growth at high RH could be a reason for less or no stomatal closure under conditions of drought stress; and (ii) the long-term ABA concentration on a fresh weight basis rather than on a dry weight basis is likely to be responsible for structural or physiological changes in stomata during leaf growth.  相似文献   

2.
Gas exchange data and images of leaf fluorescence were collected concurrently as stomata responded to abscisic acid (ABA) application. When 10?5kmolm?3 ABA was applied to the transpiration stream in a short pulse, stomatal conductance (gs), photosynthesis (A) and intercellular CO2 concentration (Ci) decreased rapidly after a short lag period and became approximately constant after 2h. There was an apparent reduction in the A versus c1 relationship as stomata closed, but the data returned to the A versus C1 curve while stomatal conductance was constant or slowly rising during the second hour after ABA treatment. Larger amounts of ABA administered during the pulse caused larger deviations from the A versus c1 relationship. When 10?7kmolm?3 ABA was applied continuously through the transpiration stream, gs, A and Ci decreased, but there was no substantial deviation from the A versus c{ curve. Fluorescence images were patchy as stomata closed for all experiments, but became slowly more uniform during the time that gas exchange was returning to the A versus Cj curve. The distribution of con-ductance among patches was not bimodal, and larger devi-ations from the A versus ct curve had greater ranges of pixel values and more pixel values representing low values of Cj during stomatal closure than did experiments show-ing small or no deviation. Estimates of A and gs from fluo-rescence images compared favourably with measured val-ues in most cases, suggesting that the patchy distributions of fluorescence were caused by patchy distributions of stomatal conductance and that apparent reductions in the A versus ct relationship were the result of these patchy stomatai distributions and not direct effects of ABA on mesophyll functioning. The data show that stomatal patches can be temporary and that patchiness may not be reflected in gas exchange data if the range of stomatal con-ductances is not large. These observations may explain some of the discrepancies among previous studies concerning the effect of ABA on the A versus Ci relationship.  相似文献   

3.
The effect of pH on stomatal sensitivity to abscisic acid   总被引:5,自引:3,他引:2  
Abstract. The sensitivity of stomata of Commelina communis L. to abscisic acid (ABA) was evaluated by analysing the initial rates of response to the compound at different hormone concentrations. This was carried out at pH 6.8 and pH 5.5. The data were modelled and statistically analyzed by means of a computer program employing non-linear regression techniques and step-down analysis of variance. The response kinetics as quantified in terms of three sensitivity parameters were found to differ significantly between the two pH values. This finding is discussed in relation to previous research on purified ABA-binding proteins.  相似文献   

4.
The water relations of leaves of Tradescantia virginiana were studied using the miniaturized pressure probe (Hüsken, E. Steudle, Zimmermann, 1978 Plant Physiol. 61, 158–163). Under well-watered conditions cell turgor pressures, P o, ranged from 2 to 8 bar in epidermal cells. In subsidiary cells P o was about 1.5 to 4.5 bar and in mesophyll cells about 2 to 3.5 bar. From the turgor pressure, relaxation induced in individual cells by changing the turgor pressure directly by means of the pressure probe, the half-time of water exchange was measured to be between 3 and 100 s for the epidermal, subsidiary, and mesophyll cells. The volumetric elastic modulus, , of individual cells was determined by changing the cell volume by a defined amount and simultaneously measuring the corresponding change in cell turgor pressure. The values for the elastic modulus for epidermal, subsidiary, and mesophyll cells are in the range of 40 to 240 bar, 30 to 200 bar, and 6 to 14 bar, respectively. Using these values, the hydraulic conductivity, L p, for the epidermal, subsidiary, and mesophyll cells is calculated from the turgor pressure relaxation process (on the basis of the thermodynamics of irreversible processes) to be between 1 and 55·10-7 cm s-1 bar-1. The data for the volumetric elastic modulus of epidermal and subsidiary cells indicate that the corresponding elastic modulus for the guard cells should be considerably lower due to the large volume changes of these cells during opening or closing. Recalculation of experimental data obtained by K. Raschke (1979, Encycl. Plant Physiol. N.S., vol. 7, pp 383–441) on epidermal strips of Vicia faba indicates that the elastic modulus of guard cells of V. faba is in the order of 40–80 bar for closed stomata. However, with increasing stomatal opening, i.e., increasing guard cell volume, decreases. Therefore, in our opinion Raschke's results would indicate a relationship between guard cell volume and which would be inverse to that for plant cells known in the literature. assumes values between 20–40 bar when the guard cell colume is soubled.  相似文献   

5.
Summary Tradescantia virginiana L. plants were cultivated under contrasting conditions of temperature, humidity, light quality and intensity, and nutrient status in order to investigate the effect of growth conditions on the water relations parameters of the leaf epidermal cells. Turgor pressure (P), volumetric elastic modulus (), half-time of water potential equilibration (T 1/2), hydraulic conductivity (L p ) were measured with the miniaturized pressure probe in single cells of the upper and lower epidermis of leaves. Turgor differed (range: 0.1 bar to 7.2 bar) between treatments with lowest values under warm and humid conditions and additional supply of fertilizer, and highest values under conditions of low air humidity and low nutrient supply. The volumetric elastic modulus changed by 2 orders of magnitude (range: 3.0 bar to 350 bar, 158 cells), but was only affected by the treatments, in as much as it was dependent on turgor. The turgor dependence of , measured on intact leaves of T. virginiana, was similar to that for cells of the isolated (peeled) lower epidermis, where as a function of turgor was linear over the whole range of turgors. This result has implications for the discussion of pressure/volume curves as measured by the pressure bomb where changes in bulk leaf are frequently discussed as adaptations to certain treatments. The measurements of the hydraulic conductivity indicate that this parameter varies between treatments (range of means: 2.4×10-6 cm s-1 bar-1 to 13.4×10-6 cm s-1 bar-1). There was a negative correlation for L p in cells of intact leaves as a function of turgor which was altered by the growing conditions. However, a correlation with turgor could not be found for cells from isolated epidermis or cells from a uniform population of plants. The large variation in L p from cell to cell observed in the present and in previous studies was accounted for in a study of 100 cells from a uniform population of plants by the propagation of measurement errors in calculating L p . The results suggest that in T. virginiana cellular water relations are changed mainly by the turgor dependence of .  相似文献   

6.
Roots of six Cucurbitaceae species were exposed to low (14 °C), middle (24 °C), and high (34 °C) temperatures while aerial parts of plants were maintained at ambient temperatures between 23 and 33 °C. The highest dry mass (DM), photon-saturated rate of net photosynthesis (P Nsat), and stomatal conductance (g s) were found at 14 °C in figleaf gourd and turban squash plants, at 24 °C in cucumber and melon plants, while bitter melon and wax gourd plants had lower DM, P Nsat, and g s at 14 °C than at 24 or 34 °C. Sub-or supra-optimum root temperatures did not induce photoinhibition but induced slight changes in the quantum efficiency of photosystem 2, PS2 (ΦPS2) and photochemical quenching (qp). Meanwhile, xylem sap abscisic acid (ABA) concentration followed a contrasting change pattern to that of g s. Thus the change in P Nsat was mainly due to the change in g s and roots played an important role in the regulation of stomatal behaviour by delivering increased amount of ABA to shoots at sub-or supra-optimum root temperatures.  相似文献   

7.
Cucumber (Cucumis sativus L.) seeds were pretreated with exogenous abscisic acid (ABA) prior to germination. After germination, seedlings with three leaves were exposed to gradual dehydration. The effects of ABA on photosynthetic rate (Pn), daily water loss (WL) and water utilization efficiency (WUE) during dehydration were investigated, in addition to the variation of carbohydrates in leaves. ABA improved the Pn, WL and WUE of cucumber seedlings during dehydration. After rehydration, the seedlings pretreated with ABA showed a higher recovery in Pn, WL and WUE, as compared to those without an ABA pretreatment. Subsequent to dehydration, concentration of stachyose, raffinose, sucrose, glucose, and fructose increased in seedlings pretreated with ABA. Dehydration altered the proportions of the sugars in the total carbohydrates, and accelerated the accumulation of stachyose, raffinose and sucrose. After rehydration, carbohydrate concentrations of seedlings pretreated with ABA recovered to levels observed prior to dehydration. These results demonstrated that pretreatment of seeds with exogenous ABA enhanced carbohydrate tolerance to dehydration of cucumber seedlings.  相似文献   

8.
Chlorophyll fluorescence imaging was used to measure stomatalclosure in response to desiccation of Tradescantia virginianaleaves grown under high (90%) and moderate (55%) relative humidities(RHs), or transferred between these humidities. Stomata in leavesgrown at high RH were less responsive to desiccation than thoseof leaves grown at moderate RH. Stomata of plants transferredfrom moderate RH conditions to high RH showed the same diminishedclosure in response to desiccation as did stomata that developedat high RH. This response was found both when the leaves werefully expanded and when still actively expanding during themoderate RH pre-treatment. Four days of exposure to high RHwas the minimal exposure time to induce the diminished closureresponse. When leaves were grown in high RH prior to a 10 dmoderate RH treatment, the reduced stomatal closure responseto desiccation was only reversed in leaves (regions) which wereactively expanding during moderate RH treatment. This indicatesthat with respect to stomatal responses to desiccation, highRH leaf regions have a limited capacity to adapt to moderateRH conditions. The decrease in responsiveness to desiccationof the stomata, induced by long-term exposure to high RH, wasnot due to osmotic adjustment in the leaves. Within 1 d aftertransferring moderate RH-grown plants to a high RH, the abscisicacid (ABA) concentration of their leaves decreased to the lowlevel of ABA found in high RH-grown leaves. The closure responsein leaves exposed to high RH for 5 d, however, could not befully restored by the application of ABA. Transferring plantsfrom high to moderate RH resulted in increased ABA levels within2 d without a recovery of the stomatal closing response. Itis discussed that the diminished stomatal closure in plantsexposed to high RH could be due to changes in the signallingpathway for ABA-related closure of stomata or to an increasedsequestration of ABA by mesophyll tissue or the symplast inthe epidermis, induced by a longer period (several days) ofa low ABA level. Key words: Abscisic acid, desiccation, PSII efficiency, relative water content, stomatal closure, vapour pressure deficit, water potential Received 8 October 2007; Revised 5 November 2007 Accepted 9 November 2007  相似文献   

9.
研究了不同浓度的5-氨基乙酰丙酸(ALA)处理遮光环境对菘蓝(Isatisindigotica)生长和靛蓝、靛玉红含量的影响。结果表明:遮光显著降低菘蓝幼苗叶片叶绿素含量、光合气体交换参数、根长、根径、生物量以及靛蓝、靛玉红含量,而外源ALA处理可以缓解遮光对菘蓝营养生长、光合作用以及生物碱积累的抑制效应;其中,13.3~25mg·L-1的ALA对营养生长以及光合作用的促进效应最明显,而100mg·L-1的ALA对生物碱积累的促进效应最明显。作者建议,在弱光条件下,用低浓度ALA处理可以提高菘蓝生物学产量,而在生物碱积累期,用较高浓度ALA处理可以提高菘蓝的药用成分含量。  相似文献   

10.
Jia W  Davies WJ 《Plant physiology》2007,143(1):68-77
The confocal microscope was used to determine the pH of the leaf apoplast and the pH of microvolumes of xylem sap. We quantified variation in leaf apoplast and sap pH in relation to changes in edaphic and atmospheric conditions that impacted on stomatal sensitivity to a root-sourced abscisic acid signal. Several plant species showed significant changes in the pH of both xylem sap and the apoplast of the shoot in response to environmental perturbation. Xylem sap leaving the root was generally more acidic than sap in the midrib and the apoplast of the leaf. Increasing the transpiration rate of both intact plants and detached plant parts resulted in more acidic leaf apoplast pHs. Experiments with inhibitors suggested that protons are removed from xylem sap as it moves up the plant, thereby alkalinizing the sap. The more rapid the transpiration rate and the shorter the time that the sap resided in the xylem/apoplastic pathway, the smaller the impact of proton removal on sap pH. Sap pH of sunflower (Helianthus annuus) and Commelina communis did not change significantly as soil dried, while pH of tomato (Lycopersicon esculentum) sap increased as water availability in the soil declined. Increasing the availability of nitrate to roots also significantly alkalinized the xylem sap of tomato plants. This nitrogen treatment had the effect of enhancing the sensitivity of the stomatal response to soil drying. These responses were interpreted as an effect of nitrate addition on sap pH and closure of stomata via an abscisic acid-based mechanism.  相似文献   

11.
为探讨番茄叶片气孔特征、气体交换参数和生物量对盐胁迫的响应机理,以赛棚和阿拉姆番茄为试材,通过向水培营养液中添加NaCl(0.1 mol·L-1),在人工气候箱条件下进行为期90 d的NaCl盐胁迫处理.结果表明: NaCl胁迫导致赛棚番茄叶片的气孔密度、气孔宽度、气孔面积和气孔面积指数显著降低,降幅分别为32%、45%、25%、49%,但没有改变阿拉姆番茄叶片的气孔特征参数.同时,NaCl胁迫还导致赛棚和阿拉姆叶片气孔规则分布的空间尺度分别减少30%和43%,且赛棚品种的单个气孔最小邻域距离在盐胁迫下增加20%.另外,赛棚和阿拉姆叶片的净光合速率(Pn)、气孔导度(gs)和蒸腾速率(Tr)在盐胁迫下均显著下降,通过气孔限制值分析发现,盐胁迫导致赛棚番茄叶片光合速率下降主要是由气孔限制因素引起的,而阿拉姆叶片则以非气孔限制因素为主导作用.盐胁迫还导致赛棚和阿拉姆番茄生物量显著降低,且地下生物量的下降幅度大于地上生物量.综合分析表明,阿拉姆的抗盐能力高于赛棚.  相似文献   

12.
Effects of abscisic acid and its derivatives on stomatal closing   总被引:2,自引:0,他引:2  
Abscisic acid and its derivatives, formed with the terminalcarboxyl group replaced respectively by aldehyde, hydroxymethyland methyl groups, were examined for their effects on stomatalclosing. Only the derivative with the methyl group was inactive.The acid and the other two derivatives were very active forclosing stomata at low concentrations. (Received January 28, 1975; )  相似文献   

13.
Summary (RS)-Abscisic acid, a natural plant hormone, has been found to inhibit photosynthesis in both detached and attached primary wheat leaves. The action occurs rapidly and is accompanied by large increases in stomatal diffusive resistance.This research was supported by the Wheat Industry Research Council.  相似文献   

14.
Abstract. Treatment of tomato seedlings with 5 mM benzo-18-crown-6, a potassium ionophore, produced a reduction in transpiration of 40%. Treatments of epidermal strips of Commelina communis with ben-zo-18-crown-6 (1-l0mM) inhibited stomatal opening, and this effect was shown to be reversible. An antagonistic interaction between abscisic acid (10−7M) and benzo-18-crown-6 (4 × 10−3 M) was also observed.  相似文献   

15.
The tonoplast of Tradescantia virginiana L. was prepared from leaf cells and then solubilized with deoxycholate (DOC) and n-octyl-beta-D-glucoside (n-OG). Three major polypeptides (68, 60, 16 kDa) and several other minor components were isolated. These polypeptides were reconstituted in soybean phospholipids (asolectin). The H(+) pump activity was investigated with the reconstituted system as well as with the tonoplast. In both cases, the quinacrine-fluorescence quenching was observed in the presence of ATP-Mg(2+), indicating the H(+) pumping. The H(+) pump activity was inhibited by gramicidin D, a channel-forming ionophore, and by KNO(3), an inhibitor specific to tonoplast-type (V-type) H(+)-ATPase.  相似文献   

16.
Response of stomata in epidermal strips from green leaves ofTradescantia sillamontana and anthocyanin-rich purple leaves ofT. virginiana and from green and pigmented regions ofPedilanthus tithymaloides leaves, to ABA have been compared. Stomata from anthocyanin-rich leaves or leaf parts appeared to be relatively insensitive to ABA as compared to those from green leaves or leaf parts. Observations indicate the possibility of the involvement of endogenous anthocyanins in antagonising ABA in preventing the stomatal opening.  相似文献   

17.
The intricate and interconnecting reactions of C3 photosynthesis are often limited by one of two fundamental processes: the conversion of solar energy into chemical energy, or the diffusion of CO2 from the atmosphere through the stomata, and ultimately into the chloroplast. In this review, we explore how the contributions of stomatal morphology and distribution can affect photosynthesis, through changes in gaseous exchange. The factors driving this relationship are considered, and recent results from studies investigating the effects of stomatal shape, size, density and patterning on photosynthesis are discussed. We suggest that the interplay between stomatal gaseous exchange and photosynthesis is complex, and that a disconnect often exists between the rates of CO2 diffusion and photosynthetic carbon fixation. The mechanisms that allow for substantial reductions in maximum stomatal conductance without affecting photosynthesis are highly dependent on environmental factors, such as light intensity, and could be exploited to improve crop performance.  相似文献   

18.
The spatial heterogeneity of stomatal closure in response to rapid desiccation of excised well-watered Tradescantia virginiana leaves grown at moderate (55%) or high (90%) relative air humidity (RH) was studied using a chlorophyll fluorescence imaging system under non-photorespiratory conditions. Following rapid desiccation, excised leaves grown at high RH had both a greater heterogeneity and a higher average value of PSII efficiency (Phi(PSII)) compared with leaves grown at moderate RH. Larger decreases in relative water content resulted in smaller decreases in water potential and Phi(PSII) of high RH-grown leaves compared with moderate RH-grown leaves. Moreover, the Phi(PSII) of excised high RH-grown leaves decreased less with decreasing water potential, implying that the stomata of high RH-grown leaves are less sensitive to decreases in leaf water potential compared with moderate RH-grown leaves. After desiccation, some non-closing stomata were distributed around the main vein in high RH-grown leaves. Direct measurements of stomatal aperture showed 77% stomatal closure in the margins after 2 h desiccation compared with 40% closure of stomata in the main-vein areas in high RH-grown leaves. Faster closure of stomata in leaf margins compared with main-vein areas of leaves grown at high RH was related to substantially lower relative water content in these areas of the leaves.  相似文献   

19.
Pod removal or petiole girdling, which causes obstruction of translocation, was found in our previous study to cause reduced rates of photosynthesis in soybean leaves due to stomatal closure. The purpose of this research was to determine the involvement of photoassimilate accumulation and leaf abscisic acid (ABA) levels in the mechanism of stomatal closure induced by such treatments.  相似文献   

20.
The effect on stomatal closure by ABA and its analogues, WL19224 and WL19377 was investigated. The rate of closure showed a sigmoid curve when various concentrations of ABA were applied. A concentration of 10-9 M ABA was the threshold for stomatal closure; maximal closure occurred at higher concentrations (from 10-6 M to 10-3 M). Use of the analogue WL19224 resulted in similar closure responses. However, ABA was more effective at lower concentrations. For example, at 10-3 M of either WL19224 and ABA, stomata closed to 2.2 μm and about 3 μm, respectively. In contrast, applications of the ABA analogue WL19377 had no effect on stomatal closure. In fact, at concentrations of WL19377 higher than 10-4 M, stomata were stimulated to open, to about 10% of their initial size. Likewise, applications of WL19377 along with ABA, inhibited ABA-induced stomatal closure. This inhibition was linearly related to the concentrations of the compounds applied. In conclusion, the structural requirements for biological activity of ABA and its analogues cannot be considered individually, but must be assessed for their roles as part of an entire functional group. Although compounds may have similar structures, their ability to control certain physiological activities may be quite different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号