首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies identified two mammalian prion protein (PrP) polybasic domains that bind the disease-associated conformer PrP(Sc), suggesting that these domains of cellular prion protein (PrP(C)) serve as docking sites for PrP(Sc) during prion propagation. To examine the role of polybasic domains in the context of full-length PrP(C), we used prion proteins lacking one or both polybasic domains expressed from Chinese hamster ovary (CHO) cells as substrates in serial protein misfolding cyclic amplification (sPMCA) reactions. After ~5 rounds of sPMCA, PrP(Sc) molecules lacking the central polybasic domain (ΔC) were formed. Surprisingly, in contrast to wild-type prions, ΔC-PrP(Sc) prions could bind to and induce quantitative conversion of all the polybasic domain mutant substrates into PrP(Sc) molecules. Remarkably, ΔC-PrP(Sc) and other polybasic domain PrP(Sc) molecules displayed diminished or absent biological infectivity relative to wild-type PrP(Sc), despite their ability to seed sPMCA reactions of normal mouse brain homogenate. Thus, ΔC-PrP(Sc) prions interact with PrP(C) molecules through a novel interaction mechanism, yielding an expanded substrate range and highly efficient PrP(Sc) propagation. Furthermore, polybasic domain deficient PrP(Sc) molecules provide the first example of dissociation between normal brain homogenate sPMCA seeding ability from biological prion infectivity. These results suggest that the propagation of PrP(Sc) molecules may not depend on a single stereotypic mechanism, but that normal PrP(C)/PrP(Sc) interaction through polybasic domains may be required to generate prion infectivity.  相似文献   

2.
The concept that transmissible spongiform encephalopathies (TSEs) are caused only by proteins has changed the traditional paradigm that disease transmission is due solely to an agent that carries genetic information. The central hypothesis for prion diseases proposes that the conversion of a cellular prion protein (PrP(C)) into a misfolded, β-sheet-rich isoform (PrP(Sc)) accounts for the development of (TSE). There is substantial evidence that the infectious material consists chiefly of a protein, PrP(Sc), with no genomic coding material, unlike a virus particle, which has both. However, prions seem to have other partners that chaperone their activities in converting the PrP(C) into the disease-causing isoform. Nucleic acids (NAs) and glycosaminoglycans (GAGs) are the most probable accomplices of prion conversion. Here, we review the recent experimental approaches that have been employed to characterize the interaction of prion proteins with nucleic acids and glycosaminoglycans. A PrP recognizes many nucleic acids and GAGs with high affinities, and this seems to be related to a pathophysiological role for this interaction. A PrP binds nucleic acids and GAGs with structural selectivity, and some PrP:NA complexes can become proteinase K-resistant, undergoing amyloid oligomerization and conversion to a β-sheet-rich structure. These results are consistent with the hypothesis that endogenous polyanions (such as NAs and GAGs) may accelerate the rate of prion disease progression by acting as scaffolds or lattices that mediate the interaction between PrP(C) and PrP(Sc) molecules. In addition to a still-possible hypothesis that nucleic acids and GAGs, especially those from the host, may modulate the conversion, the recent structural characterization of the complexes has raised the possibility of developing new diagnostic and therapeutic strategies.  相似文献   

3.
Conformational changes and aggregation of specific proteins are hallmarks of a number of diseases, like Alzheimer's disease, Parkinson's disease, and prion diseases. In the case of prion diseases, the prion protein (PrP), a neuronal glycoprotein, undergoes a conformational change from the normal, mainly alpha-helical conformation to a disease-associated, mainly beta-sheeted scrapie isoform (PrP(Sc)), which forms amyloid aggregates. This conversion, which is crucial for disease progression, depends on direct PrP(C)/PrP(Sc) interaction. We developed a high-throughput assay based on scanning for intensely fluorescent targets (SIFT) for the identification of drugs which interfere with this interaction at the molecular level. Screening of a library of 10,000 drug-like compounds yielded 256 primary hits, 80 of which were confirmed by dose response curves with half-maximal inhibitory effects ranging from 0.3 to 60 microM. Among these, six compounds displayed an inhibitory effect on PrP(Sc) propagation in scrapie-infected N2a cells. Four of these candidate drugs share an N'-benzylidene-benzohydrazide core structure. Thus, the combination of high-throughput in vitro assay with the established cell culture system provides a rapid and efficient method to identify new antiprion drugs, which corroborates that interaction of PrP(C) and PrP(Sc) is a crucial molecular step in the propagation of prions. Moreover, SIFT-based screening may facilitate the search for drugs against other diseases linked to protein aggregation.  相似文献   

4.
Prions are defined as infectious agents that comprise only proteins and are responsible for transmissible spongiform encephalopathies (TSEs)--fatal neurodegenerative diseases that affect humans and other mammals and include Creutzfeldt-Jacob disease in humans, scrapie in sheep and bovine spongiform encephalopathy in cattle. Prions have been proposed to arise from the conformational conversion of the cellular prion protein PrP(C) to a misfolded form termed PrP(Sc) that precipitates into aggregates and fibrils. The conversion process might be triggered by interaction of the infectious form with the cellular form or it might result from a mutation in the gene encoding PrP(C). Exactly how and where in the cell the interaction and the conversion of PrP(C) to PrP(Sc) occur, however, remain controversial. Recent studies have shed light on the intracellular trafficking of PrP(C), the role of protein mis-sorting and the cellular factors that are thought to be required for the conformational conversion of prion proteins.  相似文献   

5.
The role of rafts in the fibrillization and aggregation of prions   总被引:4,自引:0,他引:4  
A key molecular event in prion diseases is the conversion of the prion protein (PrP) from its normal cellular form (PrP(C)) to the disease-specific form (PrP(Sc)). The transition from PrP(C) to PrP(Sc) involves a major conformational change, resulting in amorphous aggregates and/or fibrillar amyloid deposits. Here several lines of evidence implicating membranes in the conversion of PrP are reviewed with a particular emphasis on the role of lipid rafts in the conformational transition of prion proteins. New correlations between in vitro biophysical studies and findings from cell biology work on the role of rafts in prion conversion are highlighted and a mechanism for the role of rafts in prion conversion is proposed.  相似文献   

6.
The main hypothesis for prion diseases proposes that the cellular protein (PrP(C)) can be altered into a misfolded, beta-sheet-rich isoform (PrP(Sc)), which in most cases undergoes aggregation. In an organism infected with PrP(Sc), PrP(C) is converted into the beta-sheet form, generating more PrP(Sc). We find that sequence-specific DNA binding to recombinant murine prion protein (mPrP-(23-231)) converts it from an alpha-helical conformation (cellular isoform) into a soluble, beta-sheet isoform similar to that found in the fibrillar state. The recombinant murine prion protein and prion domains bind with high affinity to DNA sequences. Several double-stranded DNA sequences in molar excess above 2:1 (pH 4.0) or 0.5:1 (pH 5.0) completely inhibit aggregation of prion peptides, as measured by light scattering, fluorescence, and circular dichroism spectroscopy. However, at a high concentration, fibers (or peptide aggregates) can rescue the peptide bound to the DNA, converting it to the aggregating form. Our results indicate that a macromolecular complex of prion-DNA may act as an intermediate for the formation of the growing fiber. We propose that host nucleic acid may modulate the delicate balance between the cellular and the misfolded conformations by reducing the protein mobility and by making the protein-protein interactions more likely. In our model, the infectious material would act as a seed to rescue the protein bound to nucleic acid. Accordingly, DNA would act on the one hand as a guardian of the Sc conformation, preventing its propagation, but on the other hand may catalyze Sc conversion and aggregation if a threshold level is exceeded.  相似文献   

7.
In prion disease, direct interaction between the cellular prion protein (PrP(C)) and its misfolded disease-associated conformer PrP(Sc) is a crucial, although poorly understood step promoting the formation of nascent PrP(Sc) and prion infectivity. Recently, we hypothesized that three regions of PrP (corresponding to amino acid residues 23-33, 98-110, and 136-158) interacting specifically and robustly with PrP(Sc), likely represent peptidic components of one flank of the prion replicative interface. In this study, we created epitope-tagged mouse PrP(C) molecules in which the PrP sequences 23-33, 98-110, and 136-158 were modified. These novel PrP molecules were individually expressed in the prion-infected neuroblastoma cell line (ScN2a) and the conversion of each mutated mouse PrP(C) substrate to PrP(Sc) compared with that of the epitope-tagged wild-type mouse PrP(C). Mutations within PrP 98-110, substituting all 4 wild-type lysine residues with alanine residues, prevented conversion to PrP(Sc). Furthermore, when residues within PrP 136-140 were collectively scrambled, changed to alanines, or amino acids at positions 136, 137, and 139 individually replaced by alanine, conversion to PrP(Sc) was similarly halted. However, other PrP molecules containing mutations within regions 23-33 and 101-104 were able to readily convert to PrP(Sc). These results suggest that PrP sequence comprising residues 98-110 and 136-140 not only participates in the specific binding interaction between PrP(C) and PrP(Sc), but also in the process leading to conversion of PrP(Sc)-sequestered PrP(C) into its disease-associated form.  相似文献   

8.
Polymorphic basic residues near the C terminus of the prion protein (PrP) in humans and sheep appear to protect against prion disease. In heterozygotes, inhibition of prion formation appears to be dominant negative and has been simulated in cultured cells persistently infected with scrapie prions. The results of nuclear magnetic resonance and mutagenesis studies indicate that specific substitutions at the C-terminal residues 167, 171, 214, and 218 of PrP(C) act as dominant-negative, inhibitors of PrP(Sc) formation (K. Kaneko et al., Proc. Natl. Acad. Sci. USA 94:10069-10074, 1997). Trafficking of substituted PrP(C) to caveaola-like domains or rafts by the glycolipid anchor was required for the dominant-negative phenotype; interestingly, amino acid replacements at multiple sites were less effective than single-residue substitutions. To elucidate which domains of PrP(C) are responsible for dominant-negative inhibition of PrP(Sc) formation, we analyzed whether N-terminally truncated PrP(Q218K) molecules exhibited dominant-negative effects in the conversion of full-length PrP(C) to PrP(Sc). We found that the C-terminal domain of PrP is not sufficient to impede the conversion of the full-length PrP(C) molecule and that N-terminally truncated molecules (with residues 23 to 88 and 23 to 120 deleted) have reduced dominant-negative activity. Whether the N-terminal region of PrP acts by stabilizing the C-terminal domain of the molecule or by modulating the binding of PrP(C) to an auxiliary molecule that participates in PrP(Sc) formation remains to be established.  相似文献   

9.
The infectious form of prion protein, PrP(Sc), self-propagates by its conversion of the normal, cellular prion protein molecule PrP(C) to another PrP(Sc) molecule. It has not yet been demonstrated that recombinant prion protein can convert prion protein molecules from PrP(C) to PrP(Sc). Here we show that recombinant hamster prion protein is converted to a second form, PrP(RDX), by a redox process in vitro and that this PrP(RDX) form seeds the conversion of other PrP(C) molecules to the PrP(RDX) form. The converted form shows properties of oligomerization and seeded conversion that are characteristic of PrP(Sc). We also find that the oligomerization can be reversed in vitro. X-ray fiber diffraction suggests an amyloid-like structure for the oligomerized prion protein. A domain-swapping model involving intermolecular disulfide bonds can account for the stability and coexistence of two molecular forms of prion protein and the capacity of the second form for self-propagation.  相似文献   

10.
Direct interaction between endogenous cellular prion protein (PrP(C)) and misfolded, disease-associated (PrP(Sc)) conformers is a key event in prion propagation, which precedes templated conversion of PrP(C) into nascent PrP(Sc) and prion infectivity. Although almost none of the molecular details of this pivotal process are understood, the persistence of individual prion strains suggests that assembly of the prion replicative complex is mechanistically precise. To systematically map defined regions of PrP(C) sequence that bind tightly to PrP(Sc), we have generated a comprehensive panel of over 45 motif-grafted antibodies containing overlapping peptide grafts collectively spanning PrP residues 19-231. Grafted antibody binding experiments, performed under stringent conditions, clearly identified only three distinct and independent high affinity PrP(Sc) recognition motifs. The first of these binding motifs lies at the very N-terminal region of the mature PrP molecule within PrP-(23-33); the second motif lies within PrP-(98-110); and the third is contained within PrP-(136-158). Mutational analyses of these PrP(Sc)-binding regions revealed that reactivity of the 23-33 and 98-110 segments are largely dependent upon the presence of multiple positively charged amino acid residues. These studies yield new insight into critical peptidic components composing one side of the prion replicative interface.  相似文献   

11.
The infectious agent of transmissible spongiform encephalopathies (TSE) is believed to comprise, at least in part, the prion protein (PrP). Other molecules can modulate the conversion of the normal PrP(C) into the pathological conformer (PrP(Sc)), but the identity and mechanisms of action of the key physiological factors remain unclear. PrP can bind to nucleic acids with relatively high affinity. Here, we report small-angle X-ray scattering (SAXS) and nuclear magnetic resonance spectroscopy measurements of the tight complex of PrP with an 18 bp DNA sequence. This double-stranded DNA sequence (E2DBS) binds with nanomolar affinity to the full-length recombinant mouse PrP. The SAXS data show that formation of the rPrP-DNA complex leads to larger values of the maximum dimension and radius of gyration. In addition, the SAXS studies reveal that the globular domain of PrP participates importantly in the formation of the complex. The changes in NMR HSQC spectra were clustered in two major regions: one in the disordered portion of the PrP and the other in the globular domain. Although interaction is mediated mainly through the PrP globular domain, the unstructured region is also recruited to the complex. This visualization of the complex provides insight into how oligonucleotides bind to PrP and opens new avenues to the design of compounds against prion diseases.  相似文献   

12.
The prion diseases are transmissible neurodegenerative disorders linked to a pathogenic conformer (PrP(Sc)) of the normal prion protein (PrP(C)). Accumulation of PrP(Sc) occurs via a poorly defined process in which PrP(Sc) complexes with and converts endogenous PrP(C) to nascent PrP(Sc). Recent experiments have focused on the highly charged first alpha helix (H1) of PrP. It has been proposed that two putative asparagine-to-arginine intrahelical salt bridges stabilize H1 in PrP(C) yet form intermolecular ionic bonds with adjacent PrP molecules during conversion of PrP(C) to PrP(Sc) (M. P. Morrissey and E. I. Shakhnovich, Proc. Natl. Acad. Sci. USA 96:11293-11298, 1999). Subsequent work (J. O. Speare et al., J. Biol. Chem. 278:12522-12529, 2003 using a cell-free assay of PrP(Sc) conversion suggested that rather than promoting conversion, the salt bridges stabilize PrP(C) against it. However, the role of individual H1 charges in PrP(Sc) generation has not yet been investigated. To approach this question, we systematically reversed or neutralized each charged residue in H1 and tested the effect on conversion to PrP(Sc) in scrapie-infected murine neuroblastoma (ScN2a) cells. We find that replacements of charged H1 residues with like charges permit conversion, while charge reversals hinder it. Neutralization of charges in the N-terminal (amino acids 143 to 146) but not the C-terminal (amino acids 147 to 151) half of H1 permits conversion, while complete reversal of charge orientation of the putative salt bridges produces a nonconvertible PrP. Circular dichroism spectroscopy studies and confocal microscopy immunofluorescence localization studies indicated that charge substitutions did not alter the secondary structure or cell surface expression of PrP(C). These data support the necessity of specific charge orientations in H1 for a productive PrP(Sc)-PrP(C) complex.  相似文献   

13.
Prion diseases or transmissible spongiform encephalopathies (TSEs) are infectious and fatal neurodegenerative disorders in humans and animals. Pathological features of TSEs include the conversion of cellular prion protein (PrP(C)) into an altered disease-associated conformation generally designated PrP(Sc), abnormal deposition of PrP(Sc) aggregates, and spongiform degeneration of the brain. The molecular steps leading to PrP(C) aggregation are unknown. Here, we have utilized an inducible oligomerization strategy to test if, in the absence of any infectious prion particles, the encounter between PrP(C) molecules may trigger its aggregation in neuronal cells. A chimeric PrP(C) composed of one (Fv1) or two (Fv2) modified FK506-binding protein (Fv) fused with PrP(C) were created, and transfected in N2a cells. Similar to PrP(C), Fv1-PrP and Fv2-PrP were glycosylated, displayed normal localization, and anti-apoptotic function. When cells were treated with the dimeric Fv ligand AP20187, to induce dimerization (Fv1) or oligomerization (Fv2) of PrP(C), both dimerization and oligomerization of PrP(C) resulted in the de novo production, release and deposition of extracellular PrP aggregates. Aggregates were insoluble in non-ionic detergents and partially resistant to proteinase K. These findings demonstrate that homologous interactions between PrP(C) molecules may constitute a minimal and sufficient molecular event leading to PrP(C) aggregation and extracellular deposition.  相似文献   

14.
During prion diseases the normal prion protein PrP(C) is refolded into an abnormal conformer PrP(Sc). We have studied the PrP(Sc) inhibiting activity of a library of synthetic heparan mimetic (HM) biopolymers. HMs are chemically derived dextrans obtained by successive substitutions with carboxymethyl, benzylamide, and sulfate groups on glucose residues. Some HMs eliminated PrP(Sc) from prion-infected cells after a 5 day course at 100 ng/ml and were 15 x potent than pentosan sulfate in this system. The anti-PrP(Sc) activity of HMs correlated with the degree of sulfation but was increased by benzylamidation. HMs did not reduce the synthesis of PrP(C) nor its attachment to lipid rafts, but instead blocked its conversion into PrP(Sc). The anti-PrP(Sc) HMs also prevented the uptake of prion rods by cultured cells. HMs may thus block the interaction of PrP(Sc) with a putative cellular receptor, possibly heparan sulfate. HMs provide an attractive chemical approach for the synthesis of TSE therapeutic and prophylactic reagents.  相似文献   

15.
The 'protein only' hypothesis postulates that the prion, the agent causing transmissible spongiform encephalopathies, is PrP(Sc), an isoform of the host protein PrP(C). Protease treatment of prion preparations cleaves off approximately 60 N-terminal residues of PrP(Sc) but does not abrogate infectivity. Disruption of the PrP gene in the mouse abolishes susceptibility to scrapie and prion replication. We have introduced into PrP knockout mice transgenes encoding wild-type PrP or PrP lacking 26 or 49 amino-proximal amino acids which are protease susceptible in PrP(Sc). Inoculation with prions led to fatal disease, prion propagation and accumulation of PrP(Sc) in mice expressing both wild-type and truncated PrPs. Within the framework of the 'protein only' hypothesis, this means that the amino-proximal segment of PrP(C) is not required either for its susceptibility to conversion into the pathogenic, infectious form of PrP or for the generation of PrP(Sc).  相似文献   

16.
Transmissible spongiform encephalopathies are characterised by widespread deposition of fibrillar and/or plaque-like forms of the prion protein. These aggregated forms are produced by misfolding of the normal prion protein, PrP(C), to the disease-associated form, PrP(Sc), through mechanisms that remain elusive but which require either direct or indirect interaction between PrP(C) and PrP(Sc) isoforms. A wealth of evidence implicates other non-PrP molecules as active participants in the misfolding process, to catalyse and direct the conformational conversion of PrP(C) or to provide a scaffold ensuring correct alignment of PrP(C) and PrP(Sc) during conversion. Such molecules may be specific to different scrapie strains to facilitate differential prion protein misfolding. Since molecular cofactors may become integrated into the growing protein fibril during prion conversion, we have investigated the proteins contained in prion disease-specific deposits by shotgun proteomics of scrapie-associated fibrils (SAF) from mice infected with 3 different strains of mouse-passaged scrapie. Concomitant use of negative control preparations allowed us to identify and discount proteins that are enriched non-specifically by the SAF isolation protocol. We found several proteins that co-purified specifically with SAF from infected brains but none of these were reproducibly and demonstrably specific for particular scrapie strains. The α-chain of Na(+)/K(+)-ATPase was common to SAF from all 3 strains and we tested the ability of this protein to modulate in vitro misfolding of recombinant PrP. Na(+)/K(+)-ATPase enhanced the efficiency of disease-specific conversion of recombinant PrP suggesting that it may act as a molecular cofactor. Consistent with previous results, the same protein inhibited fibrillisation kinetics of recombinant PrP. Since functional interactions between PrP(C) and Na(+)/K(+)-ATPase have previously been reported in astrocytes, our data highlight this molecule as a key link between PrP function, dysfunction and misfolding.  相似文献   

17.
Bennion BJ  DeMarco ML  Daggett V 《Biochemistry》2004,43(41):12955-12963
Transmissible spongiform encephalopathies are a class of fatal neurodegenerative diseases linked to the prion protein. The prion protein normally exists in a soluble, globular state (PrP(C)) that appears to participate in copper metabolism in the central nervous system and/or signal transduction. Infection or disease occurs when an alternatively folded form of the prion protein (PrP(Sc)) converts soluble and predominantly alpha-helical PrP(C) into aggregates rich in beta-structure. The structurally disordered N-terminus adopts beta-structure upon conversion to PrP(Sc) at low pH. Chemical chaperones, such as trimethylamine N-oxide (TMAO), can prevent formation of PrP(Sc) in scrapie-infected mouse neuroblastoma cells [Tatzelt, J., et al. (1996) EMBO J. 15, 6363-6373]. To explore the mechanism of TMAO protection of PrP(C) at the atomic level, molecular dynamics simulations were performed under conditions normally leading to conversion (low pH) with and without 1 M TMAO. In PrP(C) simulations at low pH, the helix content drops and the N-terminus is brought into the small native beta-sheet, yielding a PrP(Sc)-like state. Addition of 1 M TMAO leads to a decreased radius of gyration, a greater number of protein-protein hydrogen bonds, and a greater number of tertiary contacts due to the N-terminus forming an Omega-loop and packing against the structured core of the protein, not due to an increase in the level of extended structure as with the PrP(C) to PrP(Sc) simulation. In simulations beginning with the "PrP(Sc)-like" structure (derived from PrP(C) simulated at low pH in pure water) in 1 M TMAO, similar structural reorganization at the N-terminus occurred, disrupting the extended sheet. The mechanism of protection by TMAO appears to be exclusionary in nature, consistent with previous theoretical and experimental studies. The TMAO-induced N-terminal conformational change prevents residues that are important in the conversion of PrP(C) to PrP(Sc) from assuming extended sheet structure at low pH.  相似文献   

18.
The infectivity associated with prion disease sets it apart from a large group of late-onset neurodegenerative disorders that shares the characteristics of protein aggregation and neurodegeneration. The unconventional infectious agent, PrP(Sc), is an aberrantly folded form of the normal prion protein (PrP(C)) and the PrP(C)-to-PrP(Sc) conversion is a critical pathogenic step in prion disease. Using the Protein Misfolding Cyclic Amplification technique, we converted folded bacterially expressed recombinant PrP into a proteinase K-resistant and aggregated conformation (rPrP-res) in the presence of anionic lipid and RNA molecules. Moreover, high prion infectivity was demonstrated by intracerebral inoculation of rPrP-res into wild-type mice, which caused prion disease with a short incubation period. The establishment of the in vitro recombinant PrP conversion assay makes it feasible for us to explore the molecular basis behind the intriguing properties associated with prion infectivity.  相似文献   

19.
The neurodegenerative spongiform encephalopathies, or prion diseases, are characterized by the conversion of the normal cellular form of the prion protein PrP(C) to a pathogenic form, PrP(Sc) [1]. There are four copies of an octarepeat PHGG(G/S)WGQ that specifically bind Cu(2+) ions within the N-terminal half of PrP(C) [2--4]. This has led to proposals that prion diseases may, in part, be due to abrogation of the normal cellular role of PrP(C) in copper homeostasis [5]. Here, we show that murine PrP(C) is rapidly endocytosed upon exposure of neuronal cells to physiologically relevant concentrations of Cu(2+) or Zn(2+), but not Mn(2+). Deletion of the four octarepeats or mutation of the histidine residues (H68/76 dyad) in the central two repeats abolished endocytosis, indicating that the internalization of PrP(C) is governed by metal binding to the octarepeats. Furthermore, a mutant form of PrP that contains nine additional octarepeats and is associated with familial prion disease [6] failed to undergo Cu(2+)-mediated endocytosis. For the first time, these results provide evidence that metal ions can promote the endocytosis of a mammalian prion protein in neuronal cells and that neurodegeneration associated with some prion diseases may arise from the ablation of this function due to mutation of the octarepeat region.  相似文献   

20.
The critical step in the pathogenesis of transmissible spongiform encephalopathies (prion diseases) is the conversion of a cellular prion protein (PrP(c)) into a protease-resistant, beta-sheet rich form (PrP(Sc)). Although the disease transmission normally requires direct interaction between exogenous PrP(Sc) and endogenous PrP(C), the pathogenic process in hereditary prion diseases appears to develop spontaneously (i.e. not requiring infection with exogenous PrP(Sc)). To gain insight into the molecular basis of hereditary spongiform encephalopathies, we have characterized the biophysical properties of the recombinant human prion protein variant containing the mutation (Phe(198) --> Ser) associated with familial Gerstmann-Straussler-Scheinker disease. Compared with the wild-type protein, the F198S variant shows a dramatically increased propensity to self-associate into beta-sheet-rich oligomers. In a guanidine HCl-containing buffer, the transition of the F198S variant from a normal alpha-helical conformation into an oligomeric beta-sheet structure is about 50 times faster than that of the wild-type protein. Importantly, in contrast to the wild-type PrP, the mutant protein undergoes a spontaneous conversion to oligomeric beta-sheet structure even in the absence of guanidine HCl or any other denaturants. In addition to beta-sheet structure, the oligomeric form of the protein is characterized by partial resistance to proteinase K digestion, affinity for amyloid-specific dye, thioflavine T, and fibrillar morphology. The increased propensity of the F198S variant to undergo a conversion to a PrP(Sc)-like form correlates with a markedly decreased thermodynamic stability of the native alpha-helical conformer of the mutant protein. This correlation supports the notion that partially unfolded intermediates may be involved in conformational conversion of the prion protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号